Non-Boltzmann Dynamics in Networks of Spiking Neurons
Crair, Michael C., Bialek, William
–Neural Information Processing Systems
We study networks of spiking neurons in which spikes are fired as a Poisson process. The state of a cell is determined by the instantaneous firing rate, and in the limit of high firing rates our model reduces to that studied by Hopfield. We find that the inclusion of spiking results in several new features, such as a noise-induced asymmetry between "on" and "off" states of the cells and probability currents which destroy the usual description of network dynamics in terms of energy surfaces. Taking account of spikes also allows us to calibrate network parameters such as "synaptic weights" against experiments on real synapses. Realistic forms of the post synaptic response alters the network dynamics, which suggests a novel dynamical learning mechanism.
Neural Information Processing Systems
Dec-31-1990