Checklist
–Neural Information Processing Systems
For all authors... (a) Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope? If you ran experiments... (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes] (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? If you used crowdsourcing or conducted research with human subjects... (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A] (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A] (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? Hyper-parameter Values learning rate 0.0005, 0.0001 batch size 16, 32 " annealing period 20000, 10000 RNN hidden dimension 64, 32, 16 Table 2: Hyper-parameters of QMIX in the Tiger-Trampoline Experiment In Section 5.1, we show the results of MAPPO and QMIX on the Tiger-Trampoline game. We used the default agent and training configuration, except for the four hyper-parameters listed in table 2. For those, we tried all combinations of the corresponding values, producing a total of 24 runs, each training for 500k steps, or 250k episodes.
Neural Information Processing Systems
May-24-2025, 06:09:51 GMT