emg2pose: A Large and Diverse Benchmark for Surface Electromyographic Hand Pose Estimation Sasha Salter, Richard Warren

Neural Information Processing Systems 

Hands are the primary means through which humans interact with the world. Reliable and always-available hand pose inference could yield new and intuitive control schemes for human-computer interactions, particularly in virtual and augmented reality. Computer vision is effective but requires one or multiple cameras and can struggle with occlusions, limited field of view, and poor lighting. Wearable wrist-based surface electromyography (sEMG) presents a promising alternative as an always-available modality sensing muscle activities that drive hand motion. However, sEMG signals are strongly dependent on user anatomy and sensor placement; existing sEMG models have thus required hundreds of users and device placements to effectively generalize for tasks other than pose inference. To facilitate progress on sEMG pose inference, we introduce the emg2pose benchmark, which is to our knowledge the first publicly available dataset of high-quality hand pose labels and wrist sEMG recordings.