Neural Network Implementation Approaches for the Connection Machine
–Neural Information Processing Systems
Two approaches are described which allow parallel computation of a model's nonlinear functions, parallel modification of a model's weights, and parallel propagation of a model's activation and error. Each approach also allows a model's interconnect structure to be physically dynamic. A Hopfield model is implemented with each approach at six sizes over the same number of CM processors to provide a performance comparison. INTRODUCflON Simulations of neural network models on digital computers perform various computations by applying linear or nonlinear functions, defined in a program, to weighted sums of integer or real numbers retrieved and stored by array reference. The numerical values are model dependent parameters like time averaged spiking frequency (activation), synaptic efficacy (weight), the error in error back propagation models, and computational temperature in thermodynamic models. The interconnect structure of a particular model is implied by indexing relationships between arrays defined in a program. On the Connection Machine (CM), these relationships are expressed in hardware processors interconnected by a 16-dimensional hypercube communication network. Mappings are constructed to defme higher dimensional interconnectivity between processors on top of the fundamental geometry of the communication network.
Neural Information Processing Systems
Dec-31-1988