Linear Learning: Landscapes and Algorithms
–Neural Information Processing Systems
What follows extends some of our results of [1] on learning from examples in layered feed-forward networks of linear units. In particular we examine what happens when the ntunber of layers is large or when the connectivity between layers is local and investigate some of the properties of an autoassociative algorithm. Notation will be as in [1] where additional motivations and references can be found. It is usual to criticize linear networks because "linear functions do not compute" and because several layers can always be reduced to one by the proper multiplication of matrices. However this is not the point of view adopted here.
Neural Information Processing Systems
Dec-31-1989