Deliberative Explanations: visualizing network insecurities
–Neural Information Processing Systems
A new approach to explainable AI, denoted deliberative explanations, is proposed. Deliberative explanations are a visualization technique that aims to go beyond the simple visualization of the image regions (or, more generally, input variables) responsible for a network prediction. Instead, they aim to expose the deliberations carried by the network to arrive at that prediction, by uncovering the insecurities of the network about the latter. The explanation consists of a list of insecurities, each composed of 1) an image region (more generally, a set of input variables), and 2) an ambiguity formed by the pair of classes responsible for the network uncertainty about the region. Since insecurity detection requires quantifying the difficulty of network predictions, deliberative explanations combine ideas from the literature on visual explanations and assessment of classification difficulty.
Neural Information Processing Systems
Mar-23-2025, 22:31:07 GMT