Sub-optimality of the Naive Mean Field approximation for proportional high-dimensional Linear Regression

Neural Information Processing Systems 

The Naïve Mean Field (NMF) approximation is widely employed in modern Machine Learning due to the huge computational gains it bestows on the statistician. Despite its popularity in practice, theoretical guarantees for high-dimensional problems are only available under strong structural assumptions (e.g., sparsity). Moreover, existing theory often does not explain empirical observations noted in the existing literature. In this paper, we take a step towards addressing these problems by deriving sharp asymptotic characterizations for the NMF approximation in high-dimensional linear regression. Our results apply to a wide class of natural priors and allow for model mismatch (i.e., the underlying statistical model can be different from the fitted model).

Similar Docs  Excel Report  more

TitleSimilaritySource
None found