Does the Neuron "Learn" like the Synapse?
–Neural Information Processing Systems
An improved learning paradigm that offers a significant reduction in computation time during the supervised learning phase is described. It is based on extending the role that the neuron plays in artificial neural systems. Prior work has regarded the neuron as a strictly passive, nonlinear processing element, and the synapse on the other hand as the primary source of information processing and knowledge retention. In this work, the role of the neuron is extended insofar as allowing its parameters to adaptively participate in the learning phase. The temperature of the sigmoid function is an example of such a parameter.
Neural Information Processing Systems
Dec-31-1989