Algorithm selection by rational metareasoning as a model of human strategy selection

Lieder, Falk, Plunkett, Dillon, Hamrick, Jessica B., Russell, Stuart J., Hay, Nicholas, Griffiths, Tom

Neural Information Processing Systems 

Selecting the right algorithm is an important problem in computer science, because the algorithm often has to exploit the structure of the input to be efficient. The human mind faces the same challenge. Therefore, solutions to the algorithm selection problem can inspire models of human strategy selection and vice versa. Here, we view the algorithm selection problem as a special case of metareasoning and derive a solution that outperforms existing methods in sorting algorithm selection. We apply our theory to model how people choose between cognitive strategies and test its prediction in a behavioral experiment.