Technology
An Information Geometric Framework for Dimensionality Reduction
Carter, Kevin M., Raich, Raviv, Hero, Alfred O. III
This report concerns the problem of dimensionality reduction through information geometric methods on statistical manifolds. While there has been considerable work recently presented regarding dimensionality reduction for the purposes of learning tasks such as classification, clustering, and visualization, these methods have focused primarily on Riemannian manifolds in Euclidean space. While sufficient for many applications, there are many high-dimensional signals which have no straightforward and meaningful Euclidean representation. In these cases, signals may be more appropriately represented as a realization of some distribution lying on a statistical manifold, or a manifold of probability density functions (PDFs). We present a framework for dimensionality reduction that uses information geometry for both statistical manifold reconstruction as well as dimensionality reduction in the data domain.
A Computational Study on Emotions and Temperament in Multi-Agent Systems
Reis, Luis Paulo, Barteneva, Daria, Lau, Nuno
Recent advances in neurosciences and psychology have provided evidence that affective phenomena pervade intelligence at many levels, being inseparable from the cognitionaction loop. Perception, attention, memory, learning, decisionmaking, adaptation, communication and social interaction are some of the aspects influenced by them. This work draws its inspirations from neurobiology, psychophysics and sociology to approach the problem of building autonomous robots capable of interacting with each other and building strategies based on temperamental decision mechanism. Modelling emotions is a relatively recent focus in artificial intelligence and cognitive modelling. Such models can ideally inform our understanding of human behavior. We may see the development of computational models of emotion as a core research focus that will facilitate advances in the large array of computational systems that model, interpret or influence human behavior. We propose a model based on a scalable, flexible and modular approach to emotion which allows runtime evaluation between emotional quality and performance. The results achieved showed that the strategies based on temperamental decision mechanism strongly influence the system performance and there are evident dependency between emotional state of the agents and their temperamental type, as well as the dependency between the team performance and the temperamental configuration of the team members, and this enable us to conclude that the modular approach to emotional programming based on temperamental theory is the good choice to develop computational mind models for emotional behavioral Multi-Agent systems.
Achieving compositionality of the stable model semantics for Smodels programs
Oikarinen, Emilia, Janhunen, Tomi
In this paper, a Gaifman-Shapiro-style module architecture is tailored to the case of Smodels programs under the stable model semantics. The composition of Smodels program modules is suitably limited by module conditions which ensure the compatibility of the module system with stable models. Hence the semantics of an entire Smodels program depends directly on stable models assigned to its modules. This result is formalized as a module theorem which truly strengthens Lifschitz and Turner's splitting-set theorem for the class of Smodels programs. To streamline generalizations in the future, the module theorem is first proved for normal programs and then extended to cover Smodels programs using a translation from the latter class of programs to the former class. Moreover, the respective notion of module-level equivalence, namely modular equivalence, is shown to be a proper congruence relation: it is preserved under substitutions of modules that are modularly equivalent. Principles for program decomposition are also addressed. The strongly connected components of the respective dependency graph can be exploited in order to extract a module structure when there is no explicit a priori knowledge about the modules of a program. The paper includes a practical demonstration of tools that have been developed for automated (de)composition of Smodels programs. To appear in Theory and Practice of Logic Programming.
Clustering of discretely observed diffusion processes
De Gregorio, Alessandro, Iacus, Stefano Maria
In this paper a new dissimilarity measure to identify groups of assets dynamics is proposed. The underlying generating process is assumed to be a diffusion process solution of stochastic differential equations and observed at discrete time. The mesh of observations is not required to shrink to zero. As distance between two observed paths, the quadratic distance of the corresponding estimated Markov operators is considered. Analysis of both synthetic data and real financial data from NYSE/NASDAQ stocks, give evidence that this distance seems capable to catch differences in both the drift and diffusion coefficients contrary to other commonly used metrics.
Finding rare objects and building pure samples: Probabilistic quasar classification from low resolution Gaia spectra
Bailer-Jones, C. A. L., Smith, K. W., Tiede, C., Sordo, R., Vallenari, A.
We develop and demonstrate a probabilistic method for classifying rare objects in surveys with the particular goal of building very pure samples. It works by modifying the output probabilities from a classifier so as to accommodate our expectation (priors) concerning the relative frequencies of different classes of objects. We demonstrate our method using the Discrete Source Classifier, a supervised classifier currently based on Support Vector Machines, which we are developing in preparation for the Gaia data analysis. DSC classifies objects using their very low resolution optical spectra. We look in detail at the problem of quasar classification, because identification of a pure quasar sample is necessary to define the Gaia astrometric reference frame. By varying a posterior probability threshold in DSC we can trade off sample completeness and contamination. We show, using our simulated data, that it is possible to achieve a pure sample of quasars (upper limit on contamination of 1 in 40,000) with a completeness of 65% at magnitudes of G=18.5, and 50% at G=20.0, even when quasars have a frequency of only 1 in every 2000 objects. The star sample completeness is simultaneously 99% with a contamination of 0.7%. Including parallax and proper motion in the classifier barely changes the results. We further show that not accounting for class priors in the target population leads to serious misclassifications and poor predictions for sample completeness and contamination. (Truncated)
Extended ASP tableaux and rule redundancy in normal logic programs
Järvisalo, Matti, Oikarinen, Emilia
We introduce an extended tableau calculus for answer set programming (ASP). The proof system is based on the ASP tableaux defined in [Gebser&Schaub, ICLP 2006], with an added extension rule. We investigate the power of Extended ASP Tableaux both theoretically and empirically. We study the relationship of Extended ASP Tableaux with the Extended Resolution proof system defined by Tseitin for sets of clauses, and separate Extended ASP Tableaux from ASP Tableaux by giving a polynomial-length proof for a family of normal logic programs P_n for which ASP Tableaux has exponential-length minimal proofs with respect to n. Additionally, Extended ASP Tableaux imply interesting insight into the effect of program simplification on the lengths of proofs in ASP. Closely related to Extended ASP Tableaux, we empirically investigate the effect of redundant rules on the efficiency of ASP solving. To appear in Theory and Practice of Logic Programming (TPLP).
Finding links and initiators: a graph reconstruction problem
Mannila, Heikki, Terzi, Evimaria
Consider a 0-1 observation matrix M, where rows correspond to entities and columns correspond to signals; a value of 1 (or 0) in cell (i,j) of M indicates that signal j has been observed (or not observed) in entity i. Given such a matrix we study the problem of inferring the underlying directed links between entities (rows) and finding which entries in the matrix are initiators. We formally define this problem and propose an MCMC framework for estimating the links and the initiators given the matrix of observations M. We also show how this framework can be extended to incorporate a temporal aspect; instead of considering a single observation matrix M we consider a sequence of observation matrices M1,..., Mt over time. We show the connection between our problem and several problems studied in the field of social-network analysis. We apply our method to paleontological and ecological data and show that our algorithms work well in practice and give reasonable results.
Networks and Natural Language Processing
Radev, Dragomir R. (University of Michigan) | Mihalcea, Rada (University of North Texas)
Over the last few years, a number of areas of natural language processing have begun applying graph-based techniques. These include, among others, text summarization, syntactic parsing, word-sense disambiguation, ontology construction, sentiment and subjectivity analysis, and text clustering. In this paper, we present some of the most successful graph-based representations and algorithms used in language processing and try to explain how and why they work.
AAAI 2008 Spring Symposia Reports
Balduccini, Marcello (Eastman Kodak Company) | Baral, Chitta (Arizona State University) | Brodaric, Boyan (Geological Survey of Canada) | Colton, Simon (Imperial College, London) | Fox, Peter (National Center for Atmospheric Research) | Gutelius, David (SRI International) | Hinkelmann, Knut (University of Applied Sciences Northwestern Switzerland) | Horswill, Ian (Northwestern University) | Huberman, Bernardo (HP Labs) | Hudlicka, Eva (Psychometrix Associates) | Lerman, Kristina (USC Information Sciences Institute) | Lisetti, Christine (Florida International University) | McGuinness, Deborah L. (Rensselaer Polytechnic Institute) | Maher, Mary Lou (National Science Foundation) | Musen, Mark A. (Stanford University) | Sahami, Mehran (Stanford University) | Sleeman, Derek (University of Aberdeen) | Thönssen, Barbara (University of Applied Sciences Northwestern Switzerland) | Velasquez, Juan D. (MIT CSAIL) | Ventura, Dan (Brigham Young University)
The titles of the eight symposia were as follows: (1) AI Meets Business Rules and Process Management, (2) Architectures for Intelligent Theory-Based Agents, (3) Creative Intelligent Systems, (4) Emotion, Personality, and Social Behavior, (5) Semantic Scientific Knowledge Integration, (6) Social Information Processing, (7) Symbiotic Relationships between Semantic Web and Knowledge Engineering, (8) Using AI to Motivate Greater Participation in Computer Science The goal of the AI Meets Business Rules and Process Management AAAI symposium was to investigate the various approaches and standards to represent business rules, business process management and the semantic web with respect to expressiveness and reasoning capabilities. The Semantic Scientific Knowledge Symposium was interested in bringing together the semantic technologies community with the scientific information technology community in an effort to build the general semantic science information community. The Social Information Processing's goal was to investigate computational and analytic approaches that will enable users to harness the efforts of large numbers of other users to solve a variety of information processing problems, from discovering high-quality content to managing common resources. The purpose of the Using AI to Motivate Greater Participation in Computer Science symposium was to identify ways that topics in AI may be used to motivate greater student participation in computer science by highlighting fun, engaging, and intellectually challenging developments in AI-related curriculum at a number of educational levels.