Goto

Collaborating Authors

 Sensing and Signal Processing


Zero-shot Image Editing with Reference Imitation Xi Chen 1 Mengting Chen 2 Yiyang Wang

Neural Information Processing Systems

Image editing serves as a practical yet challenging task considering the diverse demands from users, where one of the hardest parts is to precisely describe how the edited image should look like. In this work, we present a new form of editing, termed imitative editing, to help users exercise their creativity more conveniently. Concretely, to edit an image region of interest, users are free to directly draw inspiration from some in-the-wild references (e.g., some relative pictures come across online), without having to cope with the fit between the reference and the source. Such a design requires the system to automatically figure out what to expect from the reference to perform the editing. For this purpose, we propose a generative training framework, dubbed MimicBrush, which randomly selects two frames from a video clip, masks some regions of one frame, and learns to recover the masked regions using the information from the other frame. That way, our model, developed from a diffusion prior, is able to capture the semantic correspondence between separate images in a self-supervised manner. We experimentally show the effectiveness of our method under various test cases as well as its superiority over existing alternatives. We also construct a benchmark to facilitate further research.


DISN: Deep Implicit Surface Network for High-quality Single-view 3D Reconstruction

Neural Information Processing Systems

Reconstructing 3D shapes from single-view images has been a long-standing research problem. In this paper, we present DISN, a Deep Implicit Surface Network which can generate a high-quality detail-rich 3D mesh from a 2D image by predicting the underlying signed distance fields. In addition to utilizing global image features, DISN predicts the projected location for each 3D point on the 2D image and extracts local features from the image feature maps. Combining global and local features significantly improves the accuracy of the signed distance field prediction, especially for the detail-rich areas. To the best of our knowledge, DISN is the first method that constantly captures details such as holes and thin structures present in 3D shapes from single-view images. DISN achieves the state-of-the-art single-view reconstruction performance on a variety of shape categories reconstructed from both synthetic and real images.


AnyFit: Controllable Virtual Try-on for Any Combination of Attire Across Any Scenario

Neural Information Processing Systems

While image-based virtual try-on has made significant strides, emerging approaches still fall short of delivering high-fidelity and robust fitting images across various scenarios, as their models suffer from issues of ill-fitted garment styles and quality degrading during the training process, not to mention the lack of support for various combinations of attire. Therefore, we first propose a lightweight, scalable, operator known as Hydra Block for attire combinations. This is achieved through a parallel attention mechanism that facilitates the feature injection of multiple garments from conditionally encoded branches into the main network. Secondly, to significantly enhance the model's robustness and expressiveness in real-world scenarios, we evolve its potential across diverse settings by synthesizing the residuals of multiple models, as well as implementing a mask region boost strategy to overcome the instability caused by information leakage in existing models. Equipped with the above design, AnyFit surpasses all baselines on high-resolution benchmarks and real-world data by a large gap, excelling in producing well-fitting garments replete with photorealistic and rich details. Furthermore, AnyFit's impressive performance on high-fidelity virtual try-ons in any scenario from any image, paves a new path for future research within the fashion community.


Self-supervised Transformation Learning for Equivariant Representations Dong-Jae Lee

Neural Information Processing Systems

Unsupervised representation learning has significantly advanced various machine learning tasks. In the computer vision domain, state-of-the-art approaches utilize transformations like random crop and color jitter to achieve invariant representations, embedding semantically the same inputs despite transformations.


Disentangling Human Error from the Ground Truth in Segmentation of Medical Images

Neural Information Processing Systems

Recent years have seen increasing use of supervised learning methods for segmentation tasks. However, the predictive performance of these algorithms depends on the quality of labels. This problem is particularly pertinent in the medical image domain, where both the annotation cost and inter-observer variability are high. In a typical label acquisition process, different human experts provide their estimates of the "true" segmentation labels under the influence of their own biases and competence levels. Treating these noisy labels blindly as the ground truth limits the performance that automatic segmentation algorithms can achieve.


GIFT: Learning Transformation-Invariant Dense Visual Descriptors via Group CNNs

Neural Information Processing Systems

Finding local correspondences between images with different viewpoints requires local descriptors that are robust against geometric transformations. An approach for transformation invariance is to integrate out the transformations by pooling the features extracted from transformed versions of an image. However, the feature pooling may sacrifice the distinctiveness of the resulting descriptors. In this paper, we introduce a novel visual descriptor named Group Invariant Feature Transform (GIFT), which is both discriminative and robust to geometric transformations. The key idea is that the features extracted from the transformed versions of an image can be viewed as a function defined on the group of the transformations. Instead of feature pooling, we use group convolutions to exploit underlying structures of the extracted features on the group, resulting in descriptors that are both discriminative and provably invariant to the group of transformations. Extensive experiments show that GIFT outperforms state-of-the-art methods on several benchmark datasets and practically improves the performance of relative pose estimation.


From Trojan Horses to Castle Walls: Unveiling Bilateral Data Poisoning Effects in Diffusion Models Zhuoshi Pan

Neural Information Processing Systems

While state-of-the-art diffusion models (DMs) excel in image generation, concerns regarding their security persist. Earlier research highlighted DMs' vulnerability to data poisoning attacks, but these studies placed stricter requirements than conventional methods like'BadNets' in image classification. This is because the art necessitates modifications to the diffusion training and sampling procedures. Unlike the prior work, we investigate whether BadNets-like data poisoning methods can directly degrade the generation by DMs. In other words, if only the training dataset is contaminated (without manipulating the diffusion process), how will this affect the performance of learned DMs?



Generative Modeling by Estimating Gradients of the Data Distribution

Neural Information Processing Systems

We introduce a new generative model where samples are produced via Langevin dynamics using gradients of the data distribution estimated with score matching. Because gradients can be ill-defined and hard to estimate when the data resides on low-dimensional manifolds, we perturb the data with different levels of Gaussian noise, and jointly estimate the corresponding scores, i.e., the vector fields of gradients of the perturbed data distribution for all noise levels. For sampling, we propose an annealed Langevin dynamics where we use gradients corresponding to gradually decreasing noise levels as the sampling process gets closer to the data manifold. Our framework allows flexible model architectures, requires no sampling during training or the use of adversarial methods, and provides a learning objective that can be used for principled model comparisons. Our models produce samples comparable to GANs on MNIST, CelebA and CIFAR-10 datasets, achieving a new state-of-the-art inception score of 8.87 on CIFAR-10. Additionally, we demonstrate that our models learn effective representations via image inpainting experiments.


Lumen: Unleashing Versatile Vision-Centric Capabilities of Large Multimodal Models Yang Jiao 1,2,3

Neural Information Processing Systems

Large Multimodal Model (LMM) is a hot research topic in the computer vision area and has also demonstrated remarkable potential across multiple disciplinary fields. A recent trend is to further extend and enhance the perception capabilities of LMMs. The current methods follow the paradigm of adapting the visual task outputs to language-oriented formats. This adaptation leads to the convenient development of such LMMs with minimal modifications, however, it overlooks the inductive biases within diverse visual tasks and hinders the learning of perception capabilities. To address this issue, we propose a novel LMM architecture named Lumen, which decouples the learning of perception capabilities into task-agnostic and task-specific stages. Firstly, Lumen promotes fine-grained vision-language concept alignment, which is the fundamental capability for various visual tasks. Thus the output of the task-agnostic stage is a shared representation for all visioncentric tasks we address in this paper. Afterward, the task-specific decoding is carried out by flexibly routing the shared representation to lightweight task decoders with negligible training efforts. Comprehensive experimental results on a series of vision-centric and VQA benchmarks indicate that our Lumen model not only achieves or surpasses the performance of existing LMM-based approaches in a range of vision-centric tasks while maintaining general visual understanding and instruction following capabilities.