Collaborating Authors

Semantic Web

Ontology Translation for Interoperability Among Semantic Web Services

AI Magazine

Research on semantic web services promises greater interoperability among software agents and web services by enabling content-based automated service discovery and interaction and by utilizing . Although this is to be based on use of shared ontologies published on the semantic web, services produced and described by different developers may well use different, perhaps partly overlapping, sets of ontologies. Interoperability will depend on ontology mappings and architectures supporting the associated translation processes. The question we ask is, does the traditional approach of introducing mediator agents to translate messages between requestors and services work in such an open environment? This article reviews some of the processing assumptions that were made in the development of the semantic web service modeling ontology OWL-S and argues that, as a practical matter, the translation function cannot always be isolated in mediators.

The CIDOC Conceptual Reference Module: An Ontological Approach to Semantic Interoperability of Metadata

AI Magazine

This article presents the methodology that has been successfully used over the past seven years by an interdisciplinary team to create the International Committee for Documentation of the International Council of Museums (CIDOC) CONCEPTUAL REFERENCE MODEL (CRM), a high-level ontology to enable information integration for cultural heritage data and their correlation with library and archive information. The CIDOC CRM is now in the process to become an International Organization for Standardization (ISO) standard. This article justifies in detail the methodology and design by functional requirements and gives examples of its contents. The CIDOC CRM analyzes the common conceptualizations behind data and metadata structures to support data transformation, mediation, and merging. It is argued that such ontologies are propertycentric, in contrast to terminological systems, and should be built with different methodologies.

Event-QA: A Dataset for Event-Centric Question Answering over Knowledge Graphs Artificial Intelligence

Semantic Question Answering (QA) is the key technology to facilitate intuitive user access to semantic information stored in knowledge graphs. Whereas most of the existing QA systems and datasets focus on entity-centric questions, very little is known about the performance of these systems in the context of events. As new event-centric knowledge graphs emerge, datasets for such questions gain importance. In this paper we present the Event-QA dataset for answering event-centric questions over knowledge graphs. Event-QA contains 1000 semantic queries and the corresponding English, German and Portuguese verbalisations for EventKG - a recently proposed event-centric knowledge graph with over 970 thousand events.

Orchestrating NLP Services for the Legal Domain Artificial Intelligence

Legal technology is currently receiving a lot of attention from various angles. In this contribution we describe the main technical components of a system that is currently under development in the European innovation project Lynx, which includes partners from industry and research. The key contribution of this paper is a workflow manager that enables the flexible orchestration of workflows based on a portfolio of Natural Language Processing and Content Curation services as well as a Multilingual Legal Knowledge Graph that contains semantic information and meaningful references to legal documents. We also describe different use cases with which we experiment and develop prototypical solutions.

Wise Sliding Window Segmentation: A classification-aided approach for trajectory segmentation Machine Learning

Large amounts of mobility data are being generated from many different sources, and several data mining methods have been proposed for this data. One of the most critical steps for trajectory data mining is segmentation. This task can be seen as a pre-processing step in which a trajectory is divided into several meaningful consecutive sub-sequences. This process is necessary because trajectory patterns may not hold in the entire trajectory but on trajectory parts. In this work, we propose a supervised trajectory segmentation algorithm, called Wise Sliding Window Segmentation (WS-II). It processes the trajectory coordinates to find behavioral changes in space and time, generating an error signal that is further used to train a binary classifier for segmenting trajectory data. This algorithm is flexible and can be used in different domains. We evaluate our method over three real datasets from different domains (meteorology, fishing, and individuals movements), and compare it with four other trajectory segmentation algorithms: OWS, GRASP-UTS, CB-SMoT, and SPD. We observed that the proposed algorithm achieves the highest performance for all datasets with statistically significant differences in terms of the harmonic mean of purity and coverage.

Foundations of Explainable Knowledge-Enabled Systems Artificial Intelligence

Explainability has been an important goal since the early days of Artificial Intelligence. Several approaches for producing explanations have been developed. However, many of these approaches were tightly coupled with the capabilities of the artificial intelligence systems at the time. With the proliferation of AI-enabled systems in sometimes critical settings, there is a need for them to be explainable to end-users and decision-makers. We present a historical overview of explainable artificial intelligence systems, with a focus on knowledge-enabled systems, spanning the expert systems, cognitive assistants, semantic applications, and machine learning domains. Additionally, borrowing from the strengths of past approaches and identifying gaps needed to make explanations user- and context-focused, we propose new definitions for explanations and explainable knowledge-enabled systems.

Expressiveness and machine processability of Knowledge Organization Systems (KOS): An analysis of concepts and relations Artificial Intelligence

This study considers the expressiveness (that is the expressive power or expressivity) of different types of Knowledge Organization Systems (KOS) and discusses its potential to be machine-processable in the context of the Semantic Web. For this purpose, the theoretical foundations of KOS are reviewed based on conceptualizations introduced by the Functional Requirements for Subject Authority Data (FRSAD) and the Simple Knowledge Organization System (SKOS); natural language processing techniques are also implemented. Applying a comparative analysis, the dataset comprises a thesaurus (Eurovoc), a subject headings system (LCSH) and a classification scheme (DDC). These are compared with an ontology (CIDOC-CRM) by focusing on how they define and handle concepts and relations. It was observed that LCSH and DDC focus on the formalism of character strings (nomens) rather than on the modelling of semantics; their definition of what constitutes a concept is quite fuzzy, and they comprise a large number of complex concepts. By contrast, thesauri have a coherent definition of what constitutes a concept, and apply a systematic approach to the modelling of relations. Ontologies explicitly define diverse types of relations, and are by their nature machine-processable. The paper concludes that the potential of both the expressiveness and machine processability of each KOS is extensively regulated by its structural rules. It is harder to represent subject headings and classification schemes as semantic networks with nodes and arcs, while thesauri are more suitable for such a representation. In addition, a paradigm shift is revealed which focuses on the modelling of relations between concepts, rather than the concepts themselves.

Dependently Typed Knowledge Graphs Artificial Intelligence

Reasoning over knowledge graphs is traditionally built upon a hierarchy of languages in the Semantic Web Stack. Starting from the Resource Description Framework (RDF) for knowledge graphs, more advanced constructs have been introduced through various syntax extensions to add reasoning capabilities to knowledge graphs. In this paper, we show how standardized semantic web technologies (RDF and its query language SPARQL) can be reproduced in a unified manner with dependent type theory. In addition to providing the basic functionalities of knowledge graphs, dependent types add expressiveness in encoding both entities and queries, explainability in answers to queries through witnesses, and compositionality and automation in the construction of witnesses. Using the Coq proof assistant, we demonstrate how to build and query dependently typed knowledge graphs as a proof of concept for future works in this direction.

Semantic Web Environments for Multi-Agent Systems: Enabling agents to use Web of Things via semantic web Artificial Intelligence

The Web is ubiquitous, increasingly populated with interconnected data, services, people, and objects. Semantic web technologies (SWT) promote uniformity of data formats, as well as modularization and reuse of specifications (e.g., ontologies), by allowing them to include and refer to information provided by other ontologies. In such a context, multi-agent system (MAS) technologies are the right abstraction for developing decentralized and open Web applications in which agents discover, reason and act on Web resources and cooperate with each other and with people. The aim of the project is to propose an approach to transform "Agent and artifact (A&A) meta-model" into a Web-readable format with ontologies in line with semantic web formats and to reuse already existing ontologies in order to provide uniform access for agents to things.