Optical Character Recognition
Human Computation
This book is aimed at achieving four goals: (1) defining human computation as a research area; (2) providing a comprehensive review of existing work; (3) drawing connections to a wide variety of disciplines, including AI, Machine Learning, HCI, Mechanism/Market Design and Psychology, and capturing their unique perspectives on the core research questions in human computation; and (4) suggesting promising research directions for the future. ISBN 9781608455164, 121 pages.
Comparison of Human and Machine Word Recognition
Schenkel, Markus, Latimer, Cyril, Jabri, Marwan A.
We present a study which is concerned with word recognition rates for heavily degraded documents. We compare human with machine reading capabilities in a series of experiments, which explores the interaction of word/non-word recognition, word frequency and legality of non-words with degradation level. We also study the influence of character segmentation, and compare human performance with that of our artificial neural network model for reading. We found that the proposed computer model uses word context as efficiently as humans, but performs slightly worse on the pure character recognition task. 1 Introduction Optical Character Recognition (OCR) of machine-print document images ยทhas matured considerably during the last decade. Recognition rates as high as 99.5% have been reported on good quality documents. However, for lower image resolutions (200 Dpl and below), noisy images, images with blur or skew, the recognition rate declines considerably. In bad quality documents, character segmentation is as big a problem as the actual character recognition.
Human Reading and the Curse of Dimensionality
Whereas optical character recognition (OCR) systems learn to classify single characters; people learn to classify long character strings in parallel, within a single fixation. This difference is surprising because high dimensionality is associated with poor classification learning. This paper suggests that the human reading system avoids these problems because the number of to-be-classified images is reduced by consistent and optimal eye fixation positions, and by character sequence regularities. An interesting difference exists between human reading and optical character recognition (OCR) systems. The input/output dimensionality of character classification in human reading is much greater than that for OCR systems (see Figure 1). OCR systems classify one character at time; while the human reading system classifies as many as 8-13 characters per eye fixation (Rayner, 1979) and within a fixation, character category and sequence information is extracted in parallel (Blanchard, McConkie, Zola, and Wolverton, 1984; Reicher, 1969).
Human Reading and the Curse of Dimensionality
Whereas optical character recognition (OCR) systems learn to classify single characters; people learn to classify long character strings in parallel, within a single fixation. This difference is surprising because high dimensionality is associated with poor classification learning. This paper suggests that the human reading system avoids these problems because the number of to-be-classified images is reduced by consistent and optimal eye fixation positions, and by character sequence regularities. An interesting difference exists between human reading and optical character recognition (OCR) systems. The input/output dimensionality of character classification in human reading is much greater than that for OCR systems (see Figure 1). OCR systems classify one character at time; while the human reading system classifies as many as 8-13 characters per eye fixation (Rayner, 1979) and within a fixation, character category and sequence information is extracted in parallel (Blanchard, McConkie, Zola, and Wolverton, 1984; Reicher, 1969).
Human Reading and the Curse of Dimensionality
Whereas optical character recognition (OCR) systems learn to classify singlecharacters; people learn to classify long character strings in parallel, within a single fixation. This difference is surprising because high dimensionality is associated with poor classification learning. This paper suggests that the human reading system avoids these problems because the number of to-be-classified images isreduced by consistent and optimal eye fixation positions, and by character sequence regularities. An interesting difference exists between human reading and optical character recognition (OCR)systems. The input/output dimensionality of character classification in human reading is much greater than that for OCR systems (see Figure 1) . OCR systems classify one character at time; while the human reading system classifies as many as 8-13 characters per eye fixation (Rayner, 1979) and within a fixation, character category and sequence information is extracted in parallel (Blanchard, McConkie, Zola, and Wolverton, 1984; Reicher, 1969).
Transformation Invariant Autoassociation with Application to Handwritten Character Recognition
Schwenk, Holger, Milgram, Maurice
When training neural networks by the classical backpropagation algorithm thewhole problem to learn must be expressed by a set of inputs and desired outputs. However, we often have high-level knowledge about the learning problem. In optical character recognition (OCR), for instance, weknow that the classification should be invariant under a set of transformations like rotation or translation. We propose a new modular classification system based on several autoassociative multilayer perceptrons whichallows the efficient incorporation of such knowledge. Results are reported on the NIST database of upper case handwritten letters and compared to other approaches to the invariance problem. 1 INCORPORATION OF EXPLICIT KNOWLEDGE The aim of supervised learning is to learn a mapping between the input and the output space from a set of example pairs (input, desired output). The classical implementation in the domain of neural networks is the backpropagation algorithm. If this learning set is sufficiently representative of the underlying data distributions, one hopes that after learning, the system is able to generalize correctly to other inputs of the same distribution.
Transformation Invariant Autoassociation with Application to Handwritten Character Recognition
Schwenk, Holger, Milgram, Maurice
When training neural networks by the classical backpropagation algorithm the whole problem to learn must be expressed by a set of inputs and desired outputs. However, we often have high-level knowledge about the learning problem. In optical character recognition (OCR), for instance, we know that the classification should be invariant under a set of transformations like rotation or translation. We propose a new modular classification system based on several autoassociative multilayer perceptrons which allows the efficient incorporation of such knowledge. Results are reported on the NIST database of upper case handwritten letters and compared to other approaches to the invariance problem. 1 INCORPORATION OF EXPLICIT KNOWLEDGE The aim of supervised learning is to learn a mapping between the input and the output space from a set of example pairs (input, desired output). The classical implementation in the domain of neural networks is the backpropagation algorithm. If this learning set is sufficiently representative of the underlying data distributions, one hopes that after learning, the system is able to generalize correctly to other inputs of the same distribution.
A Comparison of Dynamic Reposing and Tangent Distance for Drug Activity Prediction
Dietterich, Thomas G., Jain, Ajay N., Lathrop, Richard H., Lozano-Pรฉrez, Tomรกs
Thomas G. Dietterich Arris Pharmaceutical Corporation and Oregon State University Corvallis, OR 97331-3202 Ajay N. Jain Arris Pharmaceutical Corporation 385 Oyster Point Blvd., Suite 3 South San Francisco, CA 94080 Richard H. Lathrop and Tomas Lozano-Perez Arris Pharmaceutical Corporation and MIT Artificial Intelligence Laboratory 545 Technology Square Cambridge, MA 02139 Abstract In drug activity prediction (as in handwritten character recognition), thefeatures extracted to describe a training example depend on the pose (location, orientation, etc.) of the example. In handwritten characterrecognition, one of the best techniques for addressing thisproblem is the tangent distance method of Simard, LeCun and Denker (1993). Jain, et al. (1993a; 1993b) introduce a new technique-dynamic reposing-that also addresses this problem. Dynamicreposing iteratively learns a neural network and then reposes the examples in an effort to maximize the predicted output values.New models are trained and new poses computed until models and poses converge. This paper compares dynamic reposing to the tangent distance method on the task of predicting the biological activityof musk compounds.
A Computational Model for Cursive Handwriting Based on the Minimization Principle
Wada, Yasuhiro, Koike, Yasuharu, Vatikiotis-Bateson, Eric, Kawato, Mitsuo
We propose a trajectory planning and control theory for continuous movements such as connected cursive handwriting and continuous natural speech. Its hardware is based on our previously proposed forward-inverse-relaxation neural network (Wada & Kawato, 1993). Computationally, its optimization principle is the minimum torquechange criterion.Regarding the representation level, hard constraints satisfied by a trajectory are represented as a set of via-points extracted from a handwritten character. Accordingly, we propose a via-point estimation algorithm that estimates via-points by repeating the trajectory formation of a character and the via-point extraction from the character. In experiments, good quantitative agreement is found between human handwriting data and the trajectories generated by the theory. Finally, we propose a recognition schema based on the movement generation. We show a result in which the recognition schema is applied to the handwritten character recognition and can be extended to the phoneme timing estimation of natural speech. 1 INTRODUCTION In reaching movements, trajectory formation is an ill-posed problem because the hand can move along an infinite number of possible trajectories from the starting to the target point.
Learning Complex Boolean Functions: Algorithms and Applications
Oliveira, Arlindo L., Sangiovanni-Vincentelli, Alberto
The most commonly used neural network models are not well suited to direct digital implementations because each node needs to perform a large number of operations between floating point values. Fortunately, the ability to learn from examples and to generalize is not restricted to networks ofthis type. Indeed, networks where each node implements a simple Boolean function (Boolean networks) can be designed in such a way as to exhibit similar properties. Two algorithms that generate Boolean networks from examples are presented. The results show that these algorithms generalize very well in a class of problems that accept compact Boolean network descriptions. The techniques described are general and can be applied to tasks that are not known to have that characteristic. Two examples of applications are presented: image reconstruction and handwritten character recognition.