Optical Character Recognition
Calibrated Structured Prediction
In user-facing applications, displaying calibrated confidence measures---probabilities that correspond to true frequency---can be as important as obtaining high accuracy. We are interested in calibration for structured prediction problems such as speech recognition, optical character recognition, and medical diagnosis. Structured prediction presents new challenges for calibration: the output space is large, and users may issue many types of probability queries (e.g., marginals) on the structured output. We extend the notion of calibration so as to handle various subtleties pertaining to the structured setting, and then provide a simple recalibration method that trains a binary classifier to predict probabilities of interest. We explore a range of features appropriate for structured recalibration, and demonstrate their efficacy on three real-world datasets.
Meta-Album: Multi-domain Meta-Dataset for Few-Shot Image Classification
We introduce Meta-Album, an image classification meta-dataset designed to facilitate few-shot learning, transfer learning, meta-learning, among other tasks. It includes 40 open datasets, each having at least 20 classes with 40 examples per class, with verified licences. They stem from diverse domains, such as ecology (fauna and flora), manufacturing (textures, vehicles), human actions, and optical character recognition, featuring various image scales (microscopic, human scales, remote sensing). All datasets are preprocessed, annotated, and formatted uniformly, and come in 3 versions (Micro \subset Mini \subset Extended) to match users' computational resources. The other 10 will be released shortly after.
PortaSpeech: Portable and High-Quality Generative Text-to-Speech
Non-autoregressive text-to-speech (NAR-TTS) models such as FastSpeech 2 [24] and Glow-TTS [8] can synthesize high-quality speech from the given text in parallel. After analyzing two kinds of generative NAR-TTS models (VAE and normalizing flow), we find that: VAE is good at capturing the long-range semantics features (e.g., prosody) even with small model size but suffers from blurry and unnatural results; and normalizing flow is good at reconstructing the frequency bin-wise details but performs poorly when the number of model parameters is limited. Inspired by these observations, to generate diverse speech with natural details and rich prosody using a lightweight architecture, we propose PortaSpeech, a portable and high-quality generative text-to-speech model. Specifically, 1) to model both the prosody and mel-spectrogram details accurately, we adopt a lightweight VAE with an enhanced prior followed by a flow-based post-net with strong conditional inputs as the main architecture.
StyleTTS 2: Towards Human-Level Text-to-Speech through Style Diffusion and Adversarial Training with Large Speech Language Models
In this paper, we present StyleTTS 2, a text-to-speech (TTS) model that leverages style diffusion and adversarial training with large speech language models (SLMs) to achieve human-level TTS synthesis. StyleTTS 2 differs from its predecessor by modeling styles as a latent random variable through diffusion models to generate the most suitable style for the text without requiring reference speech, achieving efficient latent diffusion while benefiting from the diverse speech synthesis offered by diffusion models. Furthermore, we employ large pre-trained SLMs, such as WavLM, as discriminators with our novel differentiable duration modeling for endto-end training, resulting in improved speech naturalness. StyleTTS 2 surpasses human recordings on the single-speaker LJSpeech dataset and matches it on the multispeaker VCTK dataset as judged by native English speakers. Moreover, when trained on the LibriTTS dataset, our model outperforms previous publicly available models for zero-shot speaker adaptation. This work achieves the first human-level TTS on both single and multispeaker datasets, showcasing the potential of style diffusion and adversarial training with large SLMs. The audio demos and source code are available at https://styletts2.github.io/.
Microsoft now confirms you can opt out of, and remove, Windows Recall
Microsoft has released a white paper of sorts outlining what the company is doing to secure user data within Windows Recall, the controversial Windows feature that takes snapshots of your activity for later searching. As of late last night, Microsoft still hasn't said whether they will release Recall to the Windows Insider channels for further testing as originally planned. In fact, Microsoft's paper says very little about Recall as a product or when they will push Recall live to the public. Recall was first launched back in May as part of the Windows 11 24H2 update and it uses the local AI capabilities of Copilot PCs. The idea is that Recall captures periodic snapshots of your screen, then uses optical character recognition plus AI-driven techniques to translate and understand your activity.
Supplementary Material of Glow-TTS: A Generative Flow for Text-to-Speech via Monotonic Alignment Search
Details of the Model Architecture The detailed encoder architecture is depicted in Figure 7. Some implementation details that we use in the decoder, and the decoder architecture are depicted in Figure 8. We design the grouped 1x1 convolutions to be able to mix channels. For each group, the same number of channels are extracted from one half of the feature map separated by coupling layers and the other half, respectively. Figure 8c shows an example.
Meta-Album: Multi-domain Meta-Dataset for Few-Shot Image Classification
We introduce Meta-Album, an image classification meta-dataset designed to facilitate few-shot learning, transfer learning, meta-learning, among other tasks. It includes 40 open datasets, each having at least 20 classes with 40 examples per class, with verified licences. They stem from diverse domains, such as ecology (fauna and flora), manufacturing (textures, vehicles), human actions, and optical character recognition, featuring various image scales (microscopic, human scales, remote sensing). All datasets are preprocessed, annotated, and formatted uniformly, and come in 3 versions (Micro Mini Extended) to match users' computational resources.