Goto

Collaborating Authors

 Image Understanding


Parametric Instance Classification for Unsupervised Visual Feature learning

Neural Information Processing Systems

This paper presents parametric instance classification (PIC) for unsupervised visual feature learning. Unlike the state-of-the-art approaches which do instance discrimination in a dual-branch non-parametric fashion, PIC directly performs a one-branch parametric instance classification, revealing a simple framework similar to supervised classification and without the need to address the information leakage issue. We show that the simple PIC framework can be as effective as the state-of-the-art approaches, i.e. SimCLR and MoCo v2, by adapting several common component settings used in the state-of-the-art approaches. We also propose two novel techniques to further improve effectiveness and practicality of PIC: 1) a sliding-window data scheduler, instead of the previous epoch-based data scheduler, which addresses the extremely infrequent instance visiting issue in PIC and improves the effectiveness; 2) a negative sampling and weight update correction approach to reduce the training time and GPU memory consumption, which also enables application of PIC to almost unlimited training images.


Adaptive Cross-Modal Few-shot Learning

Neural Information Processing Systems

Metric-based meta-learning techniques have successfully been applied to few-shot classification problems. In this paper, we propose to leverage cross-modal information to enhance metric-based few-shot learning methods. Visual and semantic feature spaces have different structures by definition. For certain concepts, visual features might be richer and more discriminative than text ones. While for others, the inverse might be true. Moreover, when the support from visual information is limited in image classification, semantic representations (learned from unsupervised text corpora) can provide strong prior knowledge and context to help learning.


Fixing the train-test resolution discrepancy

Neural Information Processing Systems

Data-augmentation is key to the training of neural networks for image classification. This paper first shows that existing augmentations induce a significant discrepancy between the size of the objects seen by the classifier at train and test time: in fact, a lower train resolution improves the classification at test time! We then propose a simple strategy to optimize the classifier performance, that employs different train and test resolutions. It relies on a computationally cheap fine-tuning of the network at the test resolution. This enables training strong classifiers using small training images, and therefore significantly reduce the training time. For instance, we obtain 77.1% top-1 accuracy on ImageNet with a ResNet-50 trained on 128x128 images, and 79.8% with one trained at 224x224.


Probing Inter-modality: Visual Parsing with Self-Attention for Vision-and-Language Pre-training

Neural Information Processing Systems

Vision-Language Pre-training (VLP) aims to learn multi-modal representations from image-text pairs and serves for downstream vision-language tasks in a fine-tuning fashion. The dominant VLP models adopt a CNN-Transformer architecture, which embeds images with a CNN, and then aligns images and text with a Transformer. Visual relationship between visual contents plays an important role in image understanding and is the basic for inter-modal alignment learning. However, CNNs have limitations in visual relation learning due to local receptive field's weakness in modeling long-range dependencies. Thus the two objectives of learning visual relation and inter-modal alignment are encapsulated in the same Transformer network. Such design might restrict the inter-modal alignment learning in the Transformer by ignoring the specialized characteristic of each objective.


Fast Training of Neural Lumigraph Representations using Meta Learning

Neural Information Processing Systems

Novel view synthesis is a long-standing problem in machine learning and computer vision. Significant progress has recently been made in developing neural scene representations and rendering techniques that synthesize photorealistic images from arbitrary views. These representations, however, are extremely slow to train and often also slow to render. Inspired by neural variants of image-based rendering, we develop a new neural rendering approach with the goal of quickly learning a high-quality representation which can also be rendered in real-time. Our approach, MetaNLR, accomplishes this by using a unique combination of a neural shape representation and 2D CNN-based image feature extraction, aggregation, and re-projection.


Trajectory Convolution for Action Recognition

Neural Information Processing Systems

How to leverage the temporal dimension is a key question in video analysis. Recent works suggest an efficient approach to video feature learning, i.e., factorizing 3D convolutions into separate components respectively for spatial and temporal convolutions. The temporal convolution, however, comes with an implicit assumption – the feature maps across time steps are well aligned so that the features at the same locations can be aggregated. This assumption may be overly strong in practical applications, especially in action recognition where the motion serves as a crucial cue. In this work, we propose a new CNN architecture TrajectoryNet, which incorporates trajectory convolution, a new operation for integrating features along the temporal dimension, to replace the existing temporal convolution.


Trajectory Convolution for Action Recognition

Neural Information Processing Systems

How to leverage the temporal dimension is one major question in video analysis. Recent works [47, 36] suggest an efficient approach to video feature learning, i.e., factorizing 3D convolutions into separate components respectively for spatial and temporal convolutions. The temporal convolution, however, comes with an implicit assumption - the feature maps across time steps are well aligned so that the features at the same locations can be aggregated. This assumption can be overly strong in practical applications, especially in action recognition where the motion serves as a crucial cue. In this work, we propose a new CNN architecture TrajectoryNet, which incorporates trajectory convolution, a new operation for integrating features along the temporal dimension, to replace the existing temporal convolution. This operation explicitly takes into account the changes in contents caused by deformation or motion, allowing the visual features to be aggregated along the the motion paths, trajectories. On two large-scale action recognition datasets, Something-Something V1 and Kinetics, the proposed network architecture achieves notable improvement over strong baselines.


Learning to Reconstruct Shapes from Unseen Classes

Neural Information Processing Systems

From a single image, humans are able to perceive the full 3D shape of an object by exploiting learned shape priors from everyday life. Contemporary single-image 3D reconstruction algorithms aim to solve this task in a similar fashion, but often end up with priors that are highly biased by training classes. Here we present an algorithm, Generalizable Reconstruction (GenRe), designed to capture more generic, class-agnostic shape priors. We achieve this with an inference network and training procedure that combine 2.5D representations of visible surfaces (depth and silhouette), spherical shape representations of both visible and non-visible surfaces, and 3D voxel-based representations, in a principled manner that exploits the causal structure of how 3D shapes give rise to 2D images. Experiments demonstrate that GenRe performs well on single-view shape reconstruction, and generalizes to diverse novel objects from categories not seen during training.


Learning to Specialize with Knowledge Distillation for Visual Question Answering

Neural Information Processing Systems

Visual Question Answering (VQA) is a notoriously challenging problem because it involves various heterogeneous tasks defined by questions within a unified framework. Learning specialized models for individual types of tasks is intuitively attracting but surprisingly difficult; it is not straightforward to outperform naïve independent ensemble approach. We present a principled algorithm to learn specialized models with knowledge distillation under a multiple choice learning (MCL) framework, where training examples are assigned dynamically to a subset of models for updating network parameters. The assigned and non-assigned models are learned to predict ground-truth answers and imitate their own base models before specialization, respectively. Our approach alleviates the limitation of data deficiency in existing MCL frameworks, and allows each model to learn its own specialized expertise without forgetting general knowledge. The proposed framework is model-agnostic and applicable to any tasks other than VQA, e.g., image classification with a large number of labels but few per-class examples, which is known to be difficult under existing MCL schemes. Our experimental results indeed demonstrate that our method outperforms other baselines for VQA and image classification.