Bayesian Inference
Training Language GANs from Scratch
Generative Adversarial Networks (GANs) enjoy great success at image generation, but have proven difficult to train in the domain of natural language. Challenges with gradient estimation, optimization instability, and mode collapse have lead practitioners to resort to maximum likelihood pre-training, followed by small amounts of adversarial fine-tuning. The benefits of GAN fine-tuning for language generation are unclear, as the resulting models produce comparable or worse samples than traditional language models. We show it is in fact possible to train a language GAN from scratch -- without maximum likelihood pre-training. We combine existing techniques such as large batch sizes, dense rewards and discriminator regularization to stabilize and improve language GANs. The resulting model, ScratchGAN, performs comparably to maximum likelihood training on EMNLP2017 News and WikiText-103 corpora according to quality and diversity metrics.
A Bayesian Approach for Personalized Federated Learning in Heterogeneous Settings
Federated learning (FL), through its privacy-preserving collaborative learning approach, has significantly empowered decentralized devices. However, constraints in either data and/or computational resources among participating clients introduce several challenges in learning, including the inability to train large model architectures, heightened risks of overfitting, and more. In this work, we present a novel FL framework grounded in Bayesian learning to address these challenges. Our approach involves training personalized Bayesian models at each client tailored to the unique complexities of the clients' datasets and efficiently collaborating across these clients. By leveraging Bayesian neural networks and their uncertainty quantification capabilities, our local training procedure robustly learns from small datasets. And the novel collaboration procedure utilizing priors in the functional (output) space of the networks facilitates collaboration across models of varying sizes, enabling the framework to adapt well in heterogeneous data and computational settings. Furthermore, we present a differentially private version of the algorithm, accompanied by formal differential privacy guarantees that apply without any assumptions on the learning algorithm. Through experiments on popular FL datasets, we demonstrate that our approach outperforms strong baselines in both homogeneous and heterogeneous settings, and under strict privacy constraints.
Multi-objects Generation with Amortized Structural Regularization
Taufik Xu, Chongxuan LI, Jun Zhu, Bo Zhang
Deep generative models (DGMs) have shown promise in image generation. However, most of the existing methods learn a model by simply optimizing a divergence between the marginal distributions of the model and the data, and often fail to capture rich structures, such as attributes of objects and their relationships, in an image. Human knowledge is a crucial element to the success of DGMs to infer these structures, especially in unsupervised learning. In this paper, we propose amortized structural regularization (ASR), which adopts posterior regularization (PR) to embed human knowledge into DGMs via a set of structural constraints. We derive a lower bound of the regularized log-likelihood in PR and adopt the amortized inference technique to jointly optimize the generative model and an auxiliary recognition model for inference efficiently. Empirical results show that ASR outperforms the DGM baselines in terms of inference performance and sample quality.
ProvNeRF: Modeling per Point Provenance in NeRFs as a Stochastic Field
Neural radiance fields (NeRFs) have gained popularity with multiple works showing promising results across various applications. However, to the best of our knowledge, existing works do not explicitly model the distribution of training camera poses, or consequently the triangulation quality, a key factor affecting reconstruction quality dating back to classical vision literature. We close this gap with ProvNeRF, an approach that models the provenance for each point - i.e., the locations where it is likely visible - of NeRFs as a stochastic field. We achieve this by extending implicit maximum likelihood estimation (IMLE) to functional space with an optimizable objective.
Drift-Resilient TabPFN: In-Context Learning Temporal Distribution Shifts on Tabular Data
Kai Helli, David Schnurr, Noah Hollmann, Samuel Mรผller, Frank Hutter
While most ML models expect independent and identically distributed data, this assumption is often violated in real-world scenarios due to distribution shifts, resulting in the degradation of machine learning model performance. Until now, no tabular method has consistently outperformed classical supervised learning, which ignores these shifts. To address temporal distribution shifts, we present Drift-Resilient TabPFN, a fresh approach based on In-Context Learning with a Prior-Data Fitted Network that learns the learning algorithm itself: it accepts the entire training dataset as input and makes predictions on the test set in a single forward pass. Specifically, it learns to approximate Bayesian inference on synthetic datasets drawn from a prior that specifies the model's inductive bias. This prior is based on structural causal models (SCM), which gradually shift over time.
Perceiving the arrow of time in autoregressive motion
Understanding the principles of causal inference in the visual system has a long history at least since the seminal studies by Albert Michotte. Many cognitive and machine learning scientists believe that intelligent behavior requires agents to possess causal models of the world. Recent ML algorithms exploit the dependence structure of additive noise terms for inferring causal structures from observational data, e.g. to detect the direction of time series; the arrow of time. This raises the question whether the subtle asymmetries between the time directions can also be perceived by humans. Here we show that human observers can indeed discriminate forward and backward autoregressive motion with non-Gaussian additive independent noise, i.e. they appear sensitive to subtle asymmetries between the time directions. We employ a so-called frozen noise paradigm enabling us to compare human performance with four different algorithms on a trial-by-trial basis: A causal inference algorithm exploiting the dependence structure of additive noise terms, a neurally inspired network, a Bayesian ideal observer model as well as a simple heuristic. Our results suggest that all human observers use similar cues or strategies to solve the arrow of time motion discrimination task, but the human algorithm is significantly different from the three machine algorithms we compared it to. In fact, our simple heuristic appears most similar to our human observers.
Stopping Bayesian Optimization with Probabilistic Regret Bounds
Bayesian optimization is a popular framework for efficiently tackling black-box search problems. As a rule, these algorithms operate by iteratively choosing what to evaluate next until some predefined budget has been exhausted. We investigate replacing this de facto stopping rule with criteria based on the probability that a point satisfies a given set of conditions. We focus on the prototypical example of an (ฯต, ฮด)-criterion: stop when a solution has been found whose value is within ฯต > 0 of the optimum with probability at least 1 ฮด under the model. For Gaussian process priors, we show that Bayesian optimization satisfies this criterion under mild technical assumptions. Further, we give a practical algorithm for evaluating Monte Carlo stopping rules in a manner that is both sample efficient and robust to estimation error. These findings are accompanied by empirical results which demonstrate the strengths and weaknesses of the proposed approach.
Divide-and-Conquer Posterior Sampling for Denoising Diffusion Priors
Recent advancements in solving Bayesian inverse problems have spotlighted denoising diffusion models (DDMs) as effective priors. Although these have great potential, DDM priors yield complex posterior distributions that are challenging to sample. Existing approaches to posterior sampling in this context address this problem either by retraining model-specific components, leading to stiff and cumbersome methods, or by introducing approximations with uncontrolled errors that affect the accuracy of the produced samples. We present an innovative framework, divide-and-conquer posterior sampling, which leverages the inherent structure of DDMs to construct a sequence of intermediate posteriors that guide the produced samples to the target posterior. Our method significantly reduces the approximation error associated with current techniques without the need for retraining. We demonstrate the versatility and effectiveness of our approach for a wide range of Bayesian inverse problems.
Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models
Beyond estimating parameters of interest from data, one of the key goals of statistical inference is to properly quantify uncertainty in these estimates. In Bayesian inference, this uncertainty is provided by the posterior distribution, the computation of which typically involves an intractable high-dimensional integral. Among available approximation methods, sampling-based approaches come with strong theoretical guarantees but scale poorly to large problems, while variational approaches scale well but offer few theoretical guarantees. In particular, variational methods are known to produce overconfident estimates of posterior uncertainty and are typically non-identifiable, with many latent variable configurations generating equivalent predictions. Here, we address these challenges by showing how diffusion-based models (DBMs), which have recently produced state-of-the-art performance in generative modeling tasks, can be repurposed for performing calibrated, identifiable Bayesian inference. By exploiting a previously established connection between the stochastic and probability flow ordinary differential equations (pfODEs) underlying DBMs, we derive a class of models, inflationary flows, that uniquely and deterministically map high-dimensional data to a lower-dimensional Gaussian distribution via ODE integration. This map is both invertible and neighborhood-preserving, with controllable numerical error, with the result that uncertainties in the data are correctly propagated to the latent space. We demonstrate how such maps can be learned via standard DBM training using a novel noise schedule and are effective at both preserving and reducing intrinsic data dimensionality. The result is a class of highly expressive generative models, uniquely defined on a low-dimensional latent space, that afford principled Bayesian inference.