Temporal Reasoning
Modeling, Simulation, and Application of Spatio-Temporal Characteristics Detection in Incipient Slip
Li, Mingxuan, Zhang, Lunwei, Huang, Qiyin, Li, Tiemin, Jiang, Yao
--Incipient slip detection provides critical feedback for robotic grasping and manipulation tasks. However, maintaining its adaptability under diverse object properties and complex working conditions remains challenging. This article highlights the importance of completely representing spatiotemporal features of slip, and proposes a novel approach for incipient slip modeling and detection. Based on the analysis of localized displacement phenomenon, we establish the relationship between the characteristic strain rate extreme events and the local slip state. This approach enables the detection of both the spatial distribution and temporal dynamics of stick -slip regions. Also, the proposed method can be applied to strain distribution sensing devices, such as vis ion-based tactile sensors. Simulations and prototype experiments validated the effectiveness of this approach under varying contact conditions, including different contact geometries, friction coefficients, and combined loads. Experiments demonstrated that this method not only accurately and reliably delineates incipient slip, but also facilitates friction parameter estimation and adaptive grasping control. INTRODUCTION ACTILE perception plays a crucial role in stable grasping and dexterous manipulation in humans [1]. Neuroscientific studies show that humans can identify the frictional parameters of objects they touch with over 90% accuracy [2], and quickly adjust the grasp force within about 200 milliseconds to prevent slipping [3]. This ability enables humans to adapt to changes in friction levels based on tactile feedback and apply proper force to ensure s tability while maintaining gentle grasping [4]. The perception of incipient slip is an effective means for friction parameter recognition and grasp force control [5],[6]. Incipient slip is an intermediate state between complete sticking and full slipping of the contact surface, as shown in Figure 1. When a tangential load is applied to the contact surface, slip first occurs at the contact edge. It gradually spreads inward, eventually covering the entire stick region [7]. This work was supported by the National Natural Science Foundation of China under Grant 52375017. We refer to these two characteristics of incipient slip as spatial and temporal characteristics: spatial characteristics refer to the distribution of the stick -slip reg ion at a given moment, while temporal characteristics describe the time evolution of local slip. These characteristics are widely present in human tactile perception. According to existing research, Human sensory information is encoded by neural populations to capture spatial distribution, rather than being transmitted by individual neurons. Besides, skin deformation can be influenced by the loading history [9].
TReMu: Towards Neuro-Symbolic Temporal Reasoning for LLM-Agents with Memory in Multi-Session Dialogues
Ge, Yubin, Romeo, Salvatore, Cai, Jason, Shu, Raphael, Sunkara, Monica, Benajiba, Yassine, Zhang, Yi
Temporal reasoning in multi-session dialogues presents a significant challenge which has been under-studied in previous temporal reasoning benchmarks. To bridge this gap, we propose a new evaluation task for temporal reasoning in multi-session dialogues and introduce an approach to construct a new benchmark by augmenting dialogues from LoCoMo and creating multi-choice QAs. Furthermore, we present TReMu, a new framework aimed at enhancing the temporal reasoning capabilities of LLM-agents in this context. Specifically, the framework employs \textit{time-aware memorization} through timeline summarization, generating retrievable memory by summarizing events in each dialogue session with their inferred dates. Additionally, we integrate \textit{neuro-symbolic temporal reasoning}, where LLMs generate Python code to perform temporal calculations and select answers. Experimental evaluations on popular LLMs demonstrate that our benchmark is challenging, and the proposed framework significantly improves temporal reasoning performance compared to baseline methods, raising from 29.83 on GPT-4o via standard prompting to 77.67 via our approach and highlighting its effectiveness in addressing temporal reasoning in multi-session dialogues.
Learning to Fuse Temporal Proximity Networks: A Case Study in Chimpanzee Social Interactions
He, Yixuan, Sandel, Aaron, Wipf, David, Cucuringu, Mihai, Mitani, John, Reinert, Gesine
How can we identify groups of primate individuals which could be conjectured to drive social structure? To address this question, one of us has collected a time series of data for social interactions between chimpanzees. Here we use a network representation, leading to the task of combining these data into a time series of a single weighted network per time stamp, where different proximities should be given different weights reflecting their relative importance. We optimize these proximity-type weights in a principled way, using an innovative loss function which rewards structural consistency across time. The approach is empirically validated by carefully designed synthetic data. Using statistical tests, we provide a way of identifying groups of individuals that stay related for a significant length of time. Applying the approach to the chimpanzee data set, we detect cliques in the animal social network time series, which can be validated by real-world intuition from prior research and qualitative observations by chimpanzee experts.
Fast Multivariate Spatio-temporal Analysis via Low Rank Tensor Learning
Accurate and efficient analysis of multivariate spatio-temporal data is critical in climatology, geology, and sociology applications. Existing models usually assume simple inter-dependence among variables, space, and time, and are computationally expensive. We propose a unified low rank tensor learning framework for multivariate spatio-temporal analysis, which can conveniently incorporate different properties in spatio-temporal data, such as spatial clustering and shared structure among variables. We demonstrate how the general framework can be applied to cokriging and forecasting tasks, and develop an efficient greedy algorithm to solve the resulting optimization problem with convergence guarantee. We conduct experiments on both synthetic datasets and real application datasets to demonstrate that our method is not only significantly faster than existing methods but also achieves lower estimation error.
TimelineKGQA: A Comprehensive Question-Answer Pair Generator for Temporal Knowledge Graphs
Sun, Qiang, Li, Sirui, Huynh, Du, Reynolds, Mark, Liu, Wei
Question answering over temporal knowledge graphs (TKGs) is crucial for understanding evolving facts and relationships, yet its development is hindered by limited datasets and difficulties in generating custom QA pairs. We propose a novel categorization framework based on timeline-context relationships, along with \textbf{TimelineKGQA}, a universal temporal QA generator applicable to any TKGs. The code is available at: \url{https://github.com/PascalSun/TimelineKGQA} as an open source Python package.
Temporal reasoning for timeline summarisation in social media
Song, Jiayu, Akhter, Mahmud, Slonim, Dana Atzil, Liakata, Maria
This paper explores whether enhancing temporal reasoning capabilities in Large Language Models (LLMs) can improve the quality of timeline summarization, the task of summarising long texts containing sequences of events, particularly social media threads . We introduce \textit{NarrativeReason}, a novel dataset focused on temporal relationships among sequential events within narratives, distinguishing it from existing temporal reasoning datasets that primarily address pair-wise event relationships. Our approach then combines temporal reasoning with timeline summarization through a knowledge distillation framework, where we first fine-tune a teacher model on temporal reasoning tasks and then distill this knowledge into a student model while simultaneously training it for the task of timeline summarization. Experimental results demonstrate that our model achieves superior performance on mental health-related timeline summarization tasks, which involve long social media threads with repetitions of events and a mix of emotions, highlighting the importance of leveraging temporal reasoning to improve timeline summarisation.
Hawkes based Representation Learning for Reasoning over Scale-free Community-structured Temporal Knowledge Graphs
Du, Yuwei, Liu, Xinyue, Liang, Wenxin, Zong, Linlin, Zhang, Xianchao
Temporal knowledge graph (TKG) reasoning has become a hot topic due to its great value in many practical tasks. The key to TKG reasoning is modeling the structural information and evolutional patterns of the TKGs. While great efforts have been devoted to TKG reasoning, the structural and evolutional characteristics of real-world networks have not been considered. In the aspect of structure, real-world networks usually exhibit clear community structure and scale-free (long-tailed distribution) properties. In the aspect of evolution, the impact of an event decays with the time elapsing. In this paper, we propose a novel TKG reasoning model called Hawkes process-based Evolutional Representation Learning Network (HERLN), which learns structural information and evolutional patterns of a TKG simultaneously, considering the characteristics of real-world networks: community structure, scale-free and temporal decaying. First, we find communities in the input TKG to make the encoding get more similar intra-community embeddings. Second, we design a Hawkes process-based relational graph convolutional network to cope with the event impact-decaying phenomenon. Third, we design a conditional decoding method to alleviate biases towards frequent entities caused by long-tailed distribution. Experimental results show that HERLN achieves significant improvements over the state-of-the-art models.
CognTKE: A Cognitive Temporal Knowledge Extrapolation Framework
Chen, Wei, Wu, Yuting, Wu, Shuhan, Zhang, Zhiyu, Liao, Mengqi, Lin, Youfang, Wan, Huaiyu
Reasoning future unknowable facts on temporal knowledge graphs (TKGs) is a challenging task, holding significant academic and practical values for various fields. Existing studies exploring explainable reasoning concentrate on modeling comprehensible temporal paths relevant to the query. Yet, these path-based methods primarily focus on local temporal paths appearing in recent times, failing to capture the complex temporal paths in TKG and resulting in the loss of longer historical relations related to the query. Motivated by the Dual Process Theory in cognitive science, we propose a \textbf{Cogn}itive \textbf{T}emporal \textbf{K}nowledge \textbf{E}xtrapolation framework (CognTKE), which introduces a novel temporal cognitive relation directed graph (TCR-Digraph) and performs interpretable global shallow reasoning and local deep reasoning over the TCR-Digraph. Specifically, the proposed TCR-Digraph is constituted by retrieving significant local and global historical temporal relation paths associated with the query. In addition, CognTKE presents the global shallow reasoner and the local deep reasoner to perform global one-hop temporal relation reasoning (System 1) and local complex multi-hop path reasoning (System 2) over the TCR-Digraph, respectively. The experimental results on four benchmark datasets demonstrate that CognTKE achieves significant improvement in accuracy compared to the state-of-the-art baselines and delivers excellent zero-shot reasoning ability. \textit{The code is available at https://github.com/WeiChen3690/CognTKE}.
STKDRec: Spatial-Temporal Knowledge Distillation for Takeaway Recommendation
Zhao, Shuyuan, Chen, Wei, Shi, Boyan, Zhou, Liyong, Lin, Shuohao, Wan, Huaiyu
The takeaway recommendation system is designed to recommend users' future takeaway purchases based on their historical purchase behaviors, thereby improving user satisfaction and increasing merchant sales. Existing methods focus on incorporating auxiliary information or leveraging knowledge graphs to alleviate the sparsity issue of user purchase sequence data. However, two main challenges limit the performance of these approaches: (1) how to capture dynamic user preferences on complex geospatial information and (2) how to efficiently integrate spatial-temporal knowledge from graphs and sequence data with low calculation costs. In this paper, we propose a novel spatial-temporal knowledge distillation for takeaway recommendation model (STKDRec) based on the two-stage training process. Specifically, during the first pre-training stage, a spatial-temporal knowledge graph (STKG) encoder is pre-trained to extract the high-order spatial-temporal and collaborative associations within the STKG. During the second STKD stage, a spatial-temporal Transformer is employed to comprehensively model dynamic user preferences on various types of fine-grained geospatial information from a sequence perspective. Furthermore, the STKD strategy is introduced to adaptively fuse the rich spatial-temporal knowledge from the pre-trained STKG encoder and the spatial-temporal transformer while reducing the cost of model training. Extensive experiments on three real-world datasets show that our STKDRec significantly outperforms the state-of-the-art baselines. Our code is available at:https://github.com/Zhaoshuyuan0246/STKDRec.
DECRL: A Deep Evolutionary Clustering Jointed Temporal Knowledge Graph Representation Learning Approach
Temporal Knowledge Graph (TKG) representation learning aims to map temporal evolving entities and relations to embedded representations in a continuous low-dimensional vector space. However, existing approaches cannot capture the temporal evolution of high-order correlations in TKGs. To this end, we propose a Deep Evolutionary Clustering jointed temporal knowledge graph Representation Learning approach (DECRL). Specifically, a deep evolutionary clustering module is proposed to capture the temporal evolution of high-order correlations among entities. Furthermore, a cluster-aware unsupervised alignment mechanism is introduced to ensure the precise one-to-one alignment of soft overlapping clusters across timestamps, thereby maintaining the temporal smoothness of clusters. In addition, an implicit correlation encoder is introduced to capture latent correlations between any pair of clusters under the guidance of a global graph. Extensive experiments on seven real-world datasets demonstrate that DECRL achieves the state-of-the-art performances, outperforming the best baseline by an average of 9.53%, 12.98%, 10.42%, and 14.68% in MRR, Hits@1, Hits@3, and Hits@10, respectively.