Collaborating Authors

Scripts & Frames

Exercise Can Help Older Adults Retain Their Memories - Neuroscience News


Summary: Regular exercise may help reduce declines in episodic memory for older adults. We all know exercise is good for us, but that still leaves plenty of questions. New research led by University of Pittsburgh psychologists pools data from dozens of studies to answer these questions, showing that older adults may be able to prevent declines in a certain kind of memory by sticking to regular exercise. "Everyone always asks, 'How much should I be exercising? What's the bare minimum to see improvement?' " said lead author Sarah Aghjayan, a Clinical and Biological Health Psychology Ph.D. student in the Kenneth P. Dietrich School of Arts and Sciences.

Carousel Memory: Rethinking the Design of Episodic Memory for Continual Learning Artificial Intelligence

Continual Learning (CL) is an emerging machine learning paradigm that aims to learn from a continuous stream of tasks without forgetting knowledge learned from the previous tasks. To avoid performance decrease caused by forgetting, prior studies exploit episodic memory (EM), which stores a subset of the past observed samples while learning from new non-i.i.d. Despite the promising results, since CL is often assumed to execute on mobile or IoT devices, the EM size is bounded by the small hardware memory capacity and makes it infeasible to meet the accuracy requirements for real-world applications. Specifically, all prior CL methods discard samples overflowed from the EM and can never retrieve them back for subsequent training steps, incurring loss of information that would exacerbate catastrophic forgetting. We explore a novel hierarchical EM management strategy to address the forgetting issue. In particular, in mobile and IoT devices, real-time data can be stored not just in high-speed RAMs but in internal storage devices as well, which offer significantly larger capacity than the RAMs. Based on this insight, we propose to exploit the abundant storage to preserve past experiences and alleviate the forgetting by allowing CL to efficiently migrate samples between memory and storage without being interfered by the slow access speed of the storage. We call it Carousel Memory (CarM). As CarM is complementary to existing CL methods, we conduct extensive evaluations of our method with seven popular CL methods and show that CarM significantly improves the accuracy of the methods across different settings by large margins in final average accuracy (up to 28.4%) while retaining the same training efficiency. With the rising demand for realistic on-device machine learning, recent years have witnessed a novel learning paradigm, namely continual learning (CL), for training neural networks (NN) with a stream of non-i.i.d. In such a paradigm, the neural network is incrementally learned with insertions of new tasks (e.g., a set of classes) (Rebuffi et al., 2017). The NN model is expected to continuously learn new knowledge from new tasks over time while retaining previously learned knowledge, which is a closer representation of how intelligent systems operate in the real world. In this learning setup, the knowledge should be acquired not only from the new data timely but also in a computationally efficient manner. In this regard, CL is suitable for learning on mobile and IoT devices (Hayes et al., 2020; Wang et al., 2019).

Gradient Episodic Memory with a Soft Constraint for Continual Learning Artificial Intelligence

Catastrophic forgetting in continual learning is a common destructive phenomenon in gradient-based neural networks that learn sequential tasks, and it is much different from forgetting in humans, who can learn and accumulate knowledge throughout their whole lives. Catastrophic forgetting is the fatal shortcoming of a large decrease in performance on previous tasks when the model is learning a novel task. To alleviate this problem, the model should have the capacity to learn new knowledge and preserve learned knowledge. We propose an average gradient episodic memory (A-GEM) with a soft constraint $\epsilon \in [0, 1]$, which is a balance factor between learning new knowledge and preserving learned knowledge; our method is called gradient episodic memory with a soft constraint $\epsilon$ ($\epsilon$-SOFT-GEM). $\epsilon$-SOFT-GEM outperforms A-GEM and several continual learning benchmarks in a single training epoch; additionally, it has state-of-the-art average accuracy and efficiency for computation and memory, like A-GEM, and provides a better trade-off between the stability of preserving learned knowledge and the plasticity of learning new knowledge.

Efficient Generation of Structured Objects with Constrained Adversarial Networks Artificial Intelligence

Generative Adversarial Networks (GANs) struggle to generate structured objects like molecules and game maps. The issue is that structured objects must satisfy hard requirements (e.g., molecules must be chemically valid) that are difficult to acquire from examples alone. As a remedy, we propose Constrained Adversarial Networks (CANs), an extension of GANs in which the constraints are embedded into the model during training. This is achieved by penalizing the generator proportionally to the mass it allocates to invalid structures. In contrast to other generative models, CANs support efficient inference of valid structures (with high probability) and allows to turn on and off the learned constraints at inference time. CANs handle arbitrary logical constraints and leverage knowledge compilation techniques to efficiently evaluate the disagreement between the model and the constraints. Our setup is further extended to hybrid logical-neural constraints for capturing very complex constraints, like graph reachability. An extensive empirical analysis shows that CANs efficiently generate valid structures that are both high-quality and novel.

'Snowpiercer' takes too long to pick up speed


Television shows are about the journey, not the destination. Train rides are the opposite; with the exception of some luxury lines, most people board trains with the sole intention of getting where they need to go. Snowpiercer is a TV show about a train that has no destination. Its passengers are the last vestiges of humanity, saved and doomed by their passage on an eternally running train that allows them to survive while the Earth falls into a permanent ice age. As a show, Snowpiercer accidentally adopts the meaninglessness of a train without a destination and fails to find the momentum to sustain its journey.

Episodic Memory in Lifelong Language Learning

Neural Information Processing Systems

We introduce a lifelong language learning setup where a model needs to learn from a stream of text examples without any dataset identifier. We propose an episodic memory model that performs sparse experience replay and local adaptation to mitigate catastrophic forgetting in this setup. Experiments on text classification and question answering demonstrate the complementary benefits of sparse experience replay and local adaptation to allow the model to continuously learn from new datasets. We also show that the space complexity of the episodic memory module can be reduced significantly ( 50-90%) by randomly choosing which examples to store in memory with a minimal decrease in performance. We consider an episodic memory component as a crucial building block of general linguistic intelligence and see our model as a first step in that direction.

Generalization of Reinforcement Learners with Working and Episodic Memory

Neural Information Processing Systems

Memory is an important aspect of intelligence and plays a role in many deep reinforcement learning models. However, little progress has been made in understanding when specific memory systems help more than others and how well they generalize. The field also has yet to see a prevalent consistent and rigorous approach for evaluating agent performance on holdout data. In this paper, we aim to develop a comprehensive methodology to test different kinds of memory in an agent and assess how well the agent can apply what it learns in training to a holdout set that differs from the training set along dimensions that we suggest are relevant for evaluating memory-specific generalization. To that end, we first construct a diverse set of memory tasks that allow us to evaluate test-time generalization across multiple dimensions.

Causal Learning by a Robot with Semantic-Episodic Memory in an Aesop's Fable Experiment Artificial Intelligence

Corvids, apes, and children solve The Crow and The Pitcher task (from Aesop's Fables) indicating a causal understanding of the task. By cumulatively interacting with different objects, how can cognitive agents abstract the underlying cause-effect relations to predict affordances of novel objects? We address this question by re-enacting the Aesop's Fable task on a robot and present a) a brain-guided neural model of semantic-episodic memory; with b) four task-agnostic learning rules that compare expectations from recalled past episodes with the current scenario to progressively extract the hidden causal relations. The ensuing robot behaviours illustrate causal learning; and predictions for novel objects converge to Archimedes' principle, independent of both the objects explored during learning and the order of their cumulative exploration.

Gradient Episodic Memory for Continual Learning

Neural Information Processing Systems

One major obstacle towards AI is the poor ability of models to solve new problems quicker, and without forgetting previously acquired knowledge. To better understand this issue, we study the problem of continual learning, where the model observes, once and one by one, examples concerning a sequence of tasks. First, we propose a set of metrics to evaluate models learning over a continuum of data. These metrics characterize models not only by their test accuracy, but also in terms of their ability to transfer knowledge across tasks. Second, we propose a model for continual learning, called Gradient Episodic Memory (GEM) that alleviates forgetting, while allowing beneficial transfer of knowledge to previous tasks.

A Stabilized Feedback Episodic Memory (SF-EM) and Home Service Provision Framework for Robot and IoT Collaboration Artificial Intelligence

The automated home referred to as Smart Home is expected to offer fully customized services to its residents, reducing the amount of home labor, thus improving human beings' welfare. Service robots and Internet of Things (IoT) play the key roles in the development of Smart Home. The service provision with these two main components in a Smart Home environment requires: 1) learning and reasoning algorithms and 2) the integration of robot and IoT systems. Conventional computational intelligence-based learning and reasoning algorithms do not successfully manage dynamic changes in the Smart Home data, and the simple integrations fail to fully draw the synergies from the collaboration of the two systems. To tackle these limitations, we propose: 1) a stabilized memory network with a feedback mechanism which can learn user behaviors in an incremental manner and 2) a robot-IoT service provision framework for a Smart Home which utilizes the proposed memory architecture as a learning and reasoning module and exploits synergies between the robot and IoT systems. We conduct a set of comprehensive experiments under various conditions to verify the performance of the proposed memory architecture and the service provision framework and analyze the experiment results.