Goto

Collaborating Authors

 Planning & Scheduling


The Power of Modeling---a Response to PDDL2.1

Journal of Artificial Intelligence Research

In this commentary I argue that although PDDL is a very useful standard for the planning competition, its design does not properly consider the issue of domain modeling. Hence, I would not advocate its use in specifying planning domains outside of the context of the planning competition. Rather, the field needs to explore different approaches and grapple more directly with the problem of effectively modeling and utilizing all of the diverse pieces of knowledge we typically have about planning domains.


TALplanner in IPC-2002: Extensions and Control Rules

Journal of Artificial Intelligence Research

TALplanner is a forward-chaining planner that relies on domain knowledge in the shape of temporal logic formulas in order to prune irrelevant parts of the search space. TALplanner recently participated in the third International Planning Competition, which had a clear emphasis on increasing the complexity of the problem domains being used as benchmark tests and the expressivity required to represent these domains in a planning system. Like many other planners, TALplanner had support for some but not all aspects of this increase in expressivity, and a number of changes to the planner were required. After a short introduction to TALplanner, this article describes some of the changes that were made before and during the competition. We also describe the process of introducing suitable domain knowledge for several of the competition domains.


SHOP2: An HTN Planning System

Journal of Artificial Intelligence Research

The SHOP2 planning system received one of the awards for distinguished performance in the 2002 International Planning Competition. This paper describes the features of SHOP2 which enabled it to excel in the competition, especially those aspects of SHOP2 that deal with temporal and metric planning domains.


Imperfect Match: PDDL 2.1 and Real Applications

Journal of Artificial Intelligence Research

PDDL was originally conceived and constructed as a lingua franca for the International Planning Competition. PDDL2.1 embodies a set of extensions intended to support the expression of something closer to ``real planning problems.'' This objective has only been partially achieved, due in large part to a deliberate focus on not moving too far from classical planning models and solution methods.


SAPA: A Multi-objective Metric Temporal Planner

Journal of Artificial Intelligence Research

Sapa is a domain-independent heuristic forward chaining planner that can handle durative actions, metric resource constraints, and deadline goals. It is designed to be capable of handling the multi-objective nature of metric temporal planning. Our technical contributions include (i) planning-graph based methods for deriving heuristics that are sensitive to both cost and makespan (ii) techniques for adjusting the heuristic estimates to take action interactions and metric resource limitations into account and (iii) a linear time greedy post-processing technique to improve execution flexibility of the solution plans. An implementation of Sapa using many of the techniques presented in this paper was one of the best domain independent planners for domains with metric and temporal constraints in the third International Planning Competition, held at AIPS-02. We describe the technical details of extracting the heuristics and present an empirical evaluation of the current implementation of Sapa.


An Architectural Approach to Ensuring Consistency in Hierarchical Execution

Journal of Artificial Intelligence Research

Hierarchical task decomposition is a method used in many agent systems to organize agent knowledge. This work shows how the combination of a hierarchy and persistent assertions of knowledge can lead to difficulty in maintaining logical consistency in asserted knowledge. We explore the problematic consequences of persistent assumptions in the reasoning process and introduce novel potential solutions. Having implemented one of the possible solutions, Dynamic Hierarchical Justification, its effectiveness is demonstrated with an empirical analysis.


Compiling Causal Theories to Successor State Axioms and STRIPS-Like Systems

Journal of Artificial Intelligence Research

We describe a system for specifying the effects of actions. Unlike those commonly used in AI planning, our system uses an action description language that allows one to specify the effects of actions using domain rules, which are state constraints that can entail new action effects from old ones. Declaratively, an action domain in our language corresponds to a nonmonotonic causal theory in the situation calculus. Procedurally, such an action domain is compiled into a set of logical theories, one for each action in the domain, from which fully instantiated successor state-like axioms and STRIPS-like systems are then generated. We expect the system to be a useful tool for knowledge engineers writing action specifications for classical AI planning systems, GOLOG systems, and other systems where formal specifications of actions are needed.


The Process Specification Language (PSL) Theory and Applications

AI Magazine

The PROCESS SPECIFICATION language (PSL) has been designed to facilitate correct and complete exchange of process information among manufacturing systems, such as scheduling, process modeling, process planning, production planning, simulation, project management, work flow, and business-process reengineering. We give an overview of the theories within the PSL ontology, discuss some of the design principles for the ontology, and finish with examples of process specifications that are based on the ontology.


Answer Set Planning Under Action Costs

Journal of Artificial Intelligence Research

Recently, planning based on answer set programming has been proposed as an approach towards realizing declarative planning systems. In this paper, we present the language Kc, which extends the declarative planning language K by action costs. Kc provides the notion of admissible and optimal plans, which are plans whose overall action costs are within a given limit resp. minimum over all plans (i.e., cheapest plans). As we demonstrate, this novel language allows for expressing some nontrivial planning tasks in a declarative way. Furthermore, it can be utilized for representing planning problems under other optimality criteria, such as computing ``shortest'' plans (with the least number of steps), and refinement combinations of cheapest and fastest plans. We study complexity aspects of the language Kc and provide a transformation to logic programs, such that planning problems are solved via answer set programming. Furthermore, we report experimental results on selected problems. Our experience is encouraging that answer set planning may be a valuable approach to expressive planning systems in which intricate planning problems can be naturally specified and solved.


Learning-Assisted Automated Planning: Looking Back, Taking Stock, Going Forward

AI Magazine

This article reports on an extensive survey and analysis of research work related to machine learning as it applies to automated planning over the past 30 years. Major research contributions are broadly characterized by learning method and then descriptive subcategories. Survey results reveal learning techniques that have extensively been applied and a number that have received scant attention. We extend the survey analysis to suggest promising avenues for future research in learning based on both previous experience and current needs in the planning community.