Object-Oriented Architecture
3D Equivariant Pose Regression via Direct Wigner-D Harmonics Prediction
Determining the 3D orientations of an object in an image, known as single-image pose estimation, is a crucial task in 3D vision applications. Existing methods typically learn 3D rotations parametrized in the spatial domain using Euler angles or quaternions, but these representations often introduce discontinuities and singularities. SO(3)-equivariant networks enable the structured capture of pose patterns with data-efficient learning, but the parametrizations in spatial domain are incompatible with their architecture, particularly spherical CNNs, which operate in the frequency domain to enhance computational efficiency. To overcome these issues, we propose a frequency-domain approach that directly predicts Wigner-D coefficients for 3D rotation regression, aligning with the operations of spherical CNNs. Our SO(3)-equivariant pose harmonics predictor overcomes the limitations of spatial parameterizations, ensuring consistent pose estimation under arbitrary rotations. Trained with a frequency-domain regression loss, our method achieves state-ofthe-art results on benchmarks such as ModelNet10-SO(3) and PASCAL3D+, with significant improvements in accuracy, robustness, and data efficiency.
Articulate your NeRF: Unsupervised articulated object modeling via conditional view synthesis
We propose a novel unsupervised method to learn pose and part-segmentation of articulated objects with rigid parts. Given two observations of an object in different articulation states, our method learns the geometry and appearance of object parts by fitting an implicit model on the first observation and renders the latter observation by distilling the part segmentation and articulation. Additionally, to tackle the challenging joint optimization of part segmentation and articulation, we propose a voxel grid based initialization strategy and a decoupled optimization procedure. Compared to the prior unsupervised work, our model obtains significantly better performance, generalizes to objects with arbitrary number of parts while it can be efficiently learned from few views only for the latter observation.
Physically Compatible 3D Object Modeling from a Single Image
We present a computational framework that transforms single images into 3D physical objects. The visual geometry of a physical object in an image is determined by three orthogonal attributes: mechanical properties, external forces, and rest-shape geometry. Existing single-view 3D reconstruction methods often overlook this underlying composition, presuming rigidity or neglecting external forces. Consequently, the reconstructed objects fail to withstand real-world physical forces, resulting in instability or undesirable deformation -- diverging from their intended designs as depicted in the image. We explicitly decompose the three physical attributes and link them through static equilibrium, which serves as a hard constraint, ensuring that the optimized physical shapes exhibit desired physical behaviors.
Federated Black-Box Adaptation for Semantic Segmentation
Federated Learning (FL) is a form of distributed learning that allows multiple institutions or clients to collaboratively learn a global model to solve a task. This allows the model to utilize the information from every institute while preserving data privacy. However, recent studies show that the promise of protecting the privacy of data is not upheld by existing methods and that it is possible to recreate the training data from the different institutions. This is done by utilizing gradients transferred between the clients and the global server during training or by knowing the model architecture at the client end. In this paper, we propose a federated learning framework for semantic segmentation without knowing the model architecture nor transferring gradients between the client and the server, thus enabling better privacy preservation. We propose BlackFed - a black-box adaptation of neural networks that utilizes zero order optimization (ZOO) to update the client model weights and first order optimization (FOO) to update the server weights. We evaluate our approach on several computer vision and medical imaging datasets to demonstrate its effectiveness. To the best of our knowledge, this work is one of the first works in employing federated learning for segmentation, devoid of gradients or model information exchange.
9232d474be0a4e5f1e1bcb0765f17f9a-Paper-Conference.pdf
We introduce a novel paradigm for offline Video Instance Segmentation (VIS), based on the hypothesis that explicit object-oriented information can be a strong clue for understanding the context of the entire sequence. To this end, we propose VITA, a simple structure built on top of an off-the-shelf Transformer-based image instance segmentation model. Specifically, we use an image object detector as a means of distilling object-specific contexts into object tokens. VITA accomplishes video-level understanding by associating frame-level object tokens without using spatio-temporal backbone features. By effectively building relationships between objects using the condensed information, VITA achieves the state-of-the-art on VIS benchmarks with a ResNet-50 backbone: 49.8 AP, 45.7 AP on YouTube-VIS 2019 & 2021, and 19.6 AP on OVIS. Moreover, thanks to its object token-based structure that is disjoint from the backbone features, VITA shows several practical advantages that previous offline VIS methods have not explored - handling long and highresolution videos with a common GPU, and freezing a frame-level detector trained on image domain. Code is available at https://github.com/sukjunhwang/
VisMin: Visual Minimal-Change Understanding Saba Ahmadi Le Zhang
Fine-grained understanding of objects, attributes, and relationships between objects is crucial for visual-language models (VLMs). To evaluate VLMs' fine-grained understanding, existing benchmarks primarily focus on evaluating VLMs' capability to distinguish between two very similar captions given an image. In this paper, our focus is on evaluating VLMs' capability to distinguish between two very similar images give a caption. To this end, we introduce a new, challenging benchmark termed Visual Minimal-Change Understanding (VisMin), which requires models to predict the correct image-caption match given two images and two captions. Importantly, the image pair (as well as the caption pair) contains minimal-changes, i.e., between the two images (as well as between the two captions), only one aspect changes at a time from among the following possible types of changes: object, attribute, count, and spatial relation.
All reviewers Architecture ablation study: An ablation study over different model architectures (Table (a)) shows that the chosen
Whilst the architecture is in part motivated empirically, it is also based on a recent theoretical rationale (ICML 2019 Honorable Mention) for using a vector offset (translation) to represent a relation [1]. FB15k's lack of hierarchy offers no advantage to hyperbolic embeddings, but its large number MuRP does not also set out to include MTL, but we hope to address this in future work. We will include all recommendations, e.g. However, we agree that it is important to compare models across a range of dimensionalities. Note that for MuRP with biases replaced by (transformed) norms, performance reduces (e.g.
Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations
Kevin Smith, Lingjie Mei, Shunyu Yao, Jiajun Wu, Elizabeth Spelke, Josh Tenenbaum, Tomer Ullman
From infancy, humans have expectations about how objects will move and interact. Even young children expect objects not to move through one another, teleport, or disappear. They are surprised by mismatches between physical expectations and perceptual observations, even in unfamiliar scenes with completely novel objects. A model that exhibits human-like understanding of physics should be similarly surprised, and adjust its beliefs accordingly. We propose ADEPT, a model that uses a coarse (approximate geometry) object-centric representation for dynamic 3D scene understanding. Inference integrates deep recognition networks, extended probabilistic physical simulation, and particle filtering for forming predictions and expectations across occlusion. We also present a new test set for measuring violations of physical expectations, using a range of scenarios derived from developmental psychology. We systematically compare ADEPT, baseline models, and human expectations on this test set. ADEPT outperforms standard network architectures in discriminating physically implausible scenes, and often performs this discrimination at the same level as people.
VoxRep: Enhancing 3D Spatial Understanding in 2D Vision-Language Models via Voxel Representation
Comprehending 3D environments is vital for intelligent systems in domains like robotics and autonomous navigation. Voxel grids offer a structured representation of 3D space, but extracting high-level semantic meaning remains challenging. This paper proposes a novel approach utilizing a Vision-Language Model (VLM) to extract "voxel semantics"-object identity, color, and location-from voxel data. Critically, instead of employing complex 3D networks, our method processes the voxel space by systematically slicing it along a primary axis (e.g., the Z-axis, analogous to CT scan slices). These 2D slices are then formatted and sequentially fed into the image encoder of a standard VLM. The model learns to aggregate information across slices and correlate spatial patterns with semantic concepts provided by the language component. This slice-based strategy aims to leverage the power of pre-trained 2D VLMs for efficient 3D semantic understanding directly from voxel representations.