Model-Based Reasoning
Efficient Model Based Diagnosis with Maximum Satisfiability
Marques-Silva, Joao (INESC-ID, IST, University of Lisbon) | Janota, Mikoláš (INESC-ID, IST, University of Lisbon) | Ignatiev, Alexey (INESC-ID, IST, University of Lisbon) | Morgado, Antonio (INESC-ID, IST, University of Lisbon)
Model-Based Diagnosis (MBD) finds a growing number of uses in different settings, which include software fault localization, debugging of spreadsheets, web services, and hardware designs, but also the analysis of biological systems, among many others. Motivated by these different uses, there have been significant improvements made to MBD algorithms in recent years. Nevertheless, the analysis of larger and more complex systems motivates further improvements to existing approaches. This paper proposes a novel encoding of MBD into maximum satisfiability (MaxSAT). The new encoding builds on recent work on using Propositional Satisfiability (SAT) for MBD, but identifies a number of key optimizations that are very effective in practice. The paper also proposes a new set of challenging MBD instances, which can be used for evaluating new MBD approaches. Experimental results obtained on existing and on the new MBD problem instances, show conclusive performance gains over the current state of the art.
SMT-Based Validation of Timed Failure Propagation Graphs
Bozzano, Marco (Fondazione Bruno Kessler) | Cimatti, Alessandro (Fondazione Bruno Kessler) | Gario, Marco (Fondazione Bruno Kessler) | Micheli, Andrea (Fondazione Bruno Kessler)
Timed Failure Propagation Graphs (TFPGs) are a formalism used in industry to describe failure propagation in a dynamic partially observable system. TFPGs are commonly used to perform model-based diagnosis. As in any model-based diagnosis approach, however, the quality of the diagnosis strongly depends on the quality of the model. Approaches to certify the quality of the TFPG are limited and mainly rely on testing. In this work we address this problem by leveraging efficient Satisfiability Modulo Theories (SMT) engines to perform exhaustive reasoning on TFPGs. We apply model-checking techniques to certify that a given TFPG satisfies (or not) a property of interest. Moreover, we discuss the problem of refinement and diagnosability testing and empirically show that our technique can be used to efficiently solve them.
A Mechanism Design Approach to Measure Awareness
Ferraioli, Diodato (University of Salerno) | Ventre, Carmine (Teesside University) | Aranyi, Gabor (Teesside University)
In this paper, we study protocols that allow to discern conscious and unconscious decisions of human beings; i.e., protocols that measure awareness. Consciousness is a central research theme in Neuroscience and AI, which remains, to date, an obscure phenomenon of human brains. Our starting point is a recent experiment, called Post Decision Wagering (PDW) (Persaud, McLeod, and Cowey 2007), that attempts to align experimenters' and subjects' objectives by leveraging financial incentives. We note a similarity with mechanism design, a research area which aims at the design of protocols that reconcile often divergent objectives through incentive-compatibility. We look at the issue of measuring awareness from this perspective. We abstract the setting underlying the PDW experiment and identify three factors that could make it ineffective: rationality, risk attitude and bias of subjects. Using mechanism design tools, we study the barrier between possibility and impossibility of incentive compatibility with respect to the aforementioned characteristics of subjects. We complete this study by showing how to use our mechanisms to potentially get a better understanding of consciousness.
On the Diagnosis of Cyber-Physical Production Systems
Niggemann, Oliver (Ostwestfalen-Lippe University of Applied Science) | Lohweg, Volker (Ostwestfalen-Lippe University of Applied Science)
Cyber-Physical Production Systems (CPPSs) are in the focus of research, industry and politics: By applying new IT and new computer science solutions, production systems will become more adaptable, more resource ef- ficient and more user friendly. The analysis and diagnosis of such systems is a major part of this trend: Plants should detect automatically wear, faults and suboptimal configurations. This paper reflects the current state-of- the-art in diagnosis against the requirements of CPPSs, identifies three main gaps and gives application scenarios to outline first ideas for potential solutions to close these gaps.
Mechanism Design for Team Formation
Wright, Mason (University of Michigan) | Vorobeychik, Yevgeniy (Vanderbilt University)
Team formation is a core problem in AI. Remarkably, little prior work has addressed the problem of mechanism design for team formation, accounting for the need to elicit agents' preferences over potential teammates. Coalition formation in the related hedonic games has received much attention, but only from the perspective of coalition stability, with little emphasis on the mechanism design objectives of true preference elicitation, social welfare, and equity. We present the first formal mechanism design framework for team formation, building on recent combinatorial matching market design literature. We exhibit four mechanisms for this problem, two novel, two simple extensions of known mechanisms from other domains. Two of these (one new, one known) have desirable theoretical properties. However, we use extensive experiments to show our second novel mechanism, despite having no theoretical guarantees, empirically achieves good incentive compatibility, welfare, and fairness.
Assessing the Robustness of Cremer-McLean with Automated Mechanism Design
Albert, Michael (The Ohio State University) | Conitzer, Vincent (Duke University) | Lopomo, Giuseppe (Duke University)
In a classic result in the mechanism design literature, Cremerand McLean (1985) show that if buyers’ valuations are sufficiently correlated, a mechanism exists that allows the seller to extract the full surplus from efficient allocation as revenue. This result is commonly seen as “too good to be true” (in practice), casting doubt on its modeling assumptions. In this paper, we use an automated mechanism design approach to assess how sensitive the Cremer-McLean result is to relaxing its main technical assumption. That assumption implies that each valuation that a bidder can have results in a unique conditional distribution over the external signal(s). We relax this, allowing multiple valuations to be consistent with the same distribution over the external signal(s). Using similar insights to Cremer-McLean, we provide a highly efficient algorithm for computing the optimal revenue in this more general case. Using this algorithm, we observe that indeed, as the number of valuations consistent with a distribution grows, the optimal revenue quickly drops to that of a reserve-price mechanism. Thus, automated mechanism design allows us to gain insight into the precise sense in which Cremer-McLean is “too good to be true.”
Online Energy Price Matrix Factorization for Power Grid Topology Tracking
Kekatos, Vassilis, Giannakis, Georgios B., Baldick, Ross
Grid security and open markets are two major smart grid goals. Transparency of market data facilitates a competitive and efficient energy environment, yet it may also reveal critical physical system information. Recovering the grid topology based solely on publicly available market data is explored here. Real-time energy prices are calculated as the Lagrange multipliers of network-constrained economic dispatch; that is, via a linear program (LP) typically solved every 5 minutes. Granted the grid Laplacian is a parameter of this LP, one could infer such a topology-revealing matrix upon observing successive LP dual outcomes. The matrix of spatio-temporal prices is first shown to factor as the product of the inverse Laplacian times a sparse matrix. Leveraging results from sparse matrix decompositions, topology recovery schemes with complementary strengths are subsequently formulated. Solvers scalable to high-dimensional and streaming market data are devised. Numerical validation using real load data on the IEEE 30-bus grid provide useful input for current and future market designs.
A Novel SAT-Based Approach to Model Based Diagnosis
Metodi, A., Stern, R., Kalech, M., Codish, M.
This paper introduces a novel encoding of Model Based Diagnosis (MBD) to Boolean Satisfaction (SAT) focusing on minimal cardinality diagnosis. The encoding is based on a combination of sophisticated MBD preprocessing algorithms and the application of a SAT compiler which optimizes the encoding to provide more succinct CNF representations than obtained with previous works. Experimental evidence indicates that our approach is superior to all published algorithms for minimal cardinality MBD. In particular, we can determine, for the first time, minimal cardinality diagnoses for the entire standard ISCAS-85 and 74XXX benchmarks. Our results open the way to improve the state-of-the-art on a range of similar MBD problems.
Mechanism Design for Mobile Geo-Location Advertising
Gatti, Nicola (Politecnico di Milano) | Rocco, Marco (Politecnico di Milano) | Ceppi, Sofia (Microsoft Research) | Gerding, Enrico H. (University of Southampton)
Mobile geo-location advertising, where mobile ads are targeted based on a user’s location, has been identified as a key growth factor for the mobile market. As with online advertising, a crucial ingredient for their success is the development of effective economic mechanisms. An important difference is that mobile ads are shown sequentially over time and information about the user can be learned based on their movements. Furthermore, ads need to be shown selectively to prevent ad fatigue. To this end, we introduce, for the first time, a user model and suitable economic mechanisms which take these factors into account. Specifically, we design two truthful mechanisms which produce an advertisement plan based on the user’s movements. One mechanism is allocatively efficient, but requires exponential compute time in the worst case. The other requires polynomial time, but is not allocatively efficient. Finally, we experimentally evaluate the trade off between compute time and efficiency of our mechanisms.