

MACHINE
INTELLIGENCE 12

MACHINE INTELLIGENCE

Machine Intelligence 1 (1967) (eds N. Collins and D. Michie) Oliver & Boyd,
Edinburgh

Machine Intelligence 2 (1968) (eds E. Dale and D. Michie) Oliver & Boyd,
Edinburgh

(1 and 2 published as one volume in 1971 by Edinburgh University Press) (eds
N. Collins, E. Dale, and D. Michie)

Machine Intelligence 3 (1968) (ed. D. Michie) Edinburgh University Press,
Edinburgh

Machine Intelligence 4 (1969) (eds B. Meltzer and D. Michie) Edinburgh
University Press, Edinburgh

Machine Intelligence 5 (1970) (eds B. Meltzer and D. Michie) Edinburgh
University Press, Edinburgh

Machine Intelligence 6 (1971) (eds B. Meltzer and D. Michie) Edinburgh
University Press, Edinburgh

Machine Intelligence 7 (1972) (eds B. Meltzer and D. Michie) Edinburgh
University Press, Edinburgh

Machine Intelligence 8 (1977) (eds E. W. Elcock and D. Michie) Ellis Norwood,
Chichester/Halsted, New York

Machine Intelligence 9 (1979) (eds J. E. Hayes, D. Michie, and L. Mikulich) Ellis
Norwood, Chichester/Halsted, New York

Machine Intelligence 10 (1982) (eds J. E. Hayes, D. Michie, and Y.-H. Pao) Ellis
Norwood, Chichester/Halsted, New York

Machine Intelligence 11(1988) (eds J. E. Hayes, D. Michie, and J. Richards)
Oxford University Press, Oxford

Machine Intelligence 12 (1991) (eds J. E. Hayes, D. Michie, and E. Tyugu)
Oxford University Press, Oxford

MACHINE
INTELLIGENCE 12
Towards an automated logic of human thought

edited by

J. E. HAYES
Research Associate, Turing Institute

D. MICHIE
Chief Scientist, Turing Institute

and

E. TY U G U
Head of Software,
Institute of Cybernetics,
Estonian Academy of Sciences

CLARENDON PRESS • OXFORD
1991

Oxford University Press, Walton Street, Oxford 0X2 6DP

Oxford New York Toronto
Delhi Bombay Calcutta Madras Karachi
Petaling Jaya Singapore Hong Kong Tokyo
Nairobi Dar es Salaam Cape Town
Melbourne Auckland
and associated companies in
Berlin lbadan

Oxford is a trade mark of Oxford University Press

Published in the United States
by Oxford University Press, New York

C J. E. Hayes, D. Michie, and E. Tyugu, 1991

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without
the prior permission of Oxford University Press

British Library Cataloguing in Publication Data

Machine intelligence.
12, Towards an automated logic of human thought
I. Artificial intelligence
I. Hayes, J. E. (Jean Elizabeth) 1928- II. Michie, Donald 1923-

Tyugu, E. (Enn) 1935-
006.3

ISBN 0-19-853823-5

Library of Congress Cataloging in Publication Data

Machine intelligence 12: towards an automated logic of human thought
/edited by J. E. Hayes, D. Michie, and E. Tyugu.

p. cm.
Includes index.
I. Artificial intelligence—Data processing. 2. Machine learning.
I. Hayes, Jean E. II. Michie, Donald III. Tyugu, E. Kh. (Enn
Kharedovich), 1935- . IV Title: Machine intelligence twelve.
Q336.M33 1991 006.3—dc20 90-7320

ISBN 0-19-853823-5

Typeset by Cotswold Typesetting Ltd, Cheltenham
Printed in Great Britain by St. Edmundsbury Press, Bury St. Edmunds

FOREWORD
Evgeni Velikhov
Vice President of the Academy of Sciences of the USSR

It is a pleasure to contribute an introduction to this twelfth volume of the
international Machine Intelligence series. My own work has, at times,
cast me in the scientific roles of experimenter, instrumentation designer,
and administrator. In all these roles I have seen the growing pervasive-
ness of the new tools of information technology. As a visitor to the 1987
meeting in Milan of the International Joint Conference on Artificial
Intelligence I received a vivid impression of the role that machine intel-
ligence in particular seems destined to play in this, the final decade of
this century. Economic growth is increasingly dependent on new
technologies in which the intelligence of machines plays a leading role.
The concept of machine intelligence itself acquires a new semantic
content. This is demonstrated by the evolution of new disciplines such as
mechatronics as well as by the increasing importance of intelligent tools
in manufacturing. It seems extremely important for the future of the
human species that the mind that machines develop grows faster than
the muscles, that is the energy parameters.
Looking at the eleven previous impressive volumes of Machine Intel-

ligence one observes that the MI conferences have covered a significant
part of the world including the Soviet Union where, before MI-12, the
ninth MI conference was also held in 1977. I believe that the style and
the content of the Machine Intelligence series will continue to reflect the
much needed dialogue between various societies.

.

PREFACE

For almost twenty-five years I have, as editor of these volumes, presided
over the inquisitiveness of the newly arrived. The young delight to get
their noses into everything. But unbounded promise must sooner or later
confront the emergence of what in ecology and in entrepreneurial com-
merce are known as 'niches'. Possibly, machine intelligence has, during
all this time, been sleepwalking towards its own true niche. In any case,
the series must now select one. Along what line do we see the future
commitment of the Machine Intelligence series?
In 1986 a Steering Committee was formed to set a direction and to

initiate the formation of an international editorial board with an execu-
tive editor and two associate editors to support the work and to organize
the workshops themselves. These will resume their initial annual tempo.
As editor-in-chief I am privileged to welcome our future executive
editor Dr Stephen Muggleton. With regard to directions, the central
theme will be the design of automated support for intellectual discovery
and its application. Sophistication of computing aids is a conspicuous
feature of today's scientific scene. From the astrophysicist's super-
computer to the field worker's pocket machine, the race has been to
automate every function but one. That one is scientific reasoning itself,
whilst Al has been the laggard.
More than a quarter of a century ago, the Nobel Prize-winning

chemical microbiologist Joshua Lederberg had a vision of intelligent
machines as partners in the scientific quest. In Stanford's DENDRAL
project he initiated the first inroad into organized empirical enquiry.
The tools of that time were too weak to accomplish more than the plant-
ing of a series of signposts, some of which appear in earlier MI volumes.
Among these the MetaDENDRAL module set a crucial pointer to the
need, reflected in this volume, to mechanize the inductive as well as the
deductive Component of the cycle of scientific inference.
A modern scientist can - fairly be described as an inductive agent

loaded to breaking point by complexity. Reporting from a sector where
the strain is especially severe, Ross King describes in this volume an
application of computer induction to the prediction of protein folding.
Elsewhere he has written that 'it was once possible to discover the
meaning of new data by carefully examining it by eye'. That time is, of
course, long past. Today, decision supports from statistical data analysis
are pressed into service. But now even these impressive constructions
are proving inadequate to such complex requirements as those of
biotechnology for empirical theories of structure—activity relationships,

vii

PREFACE

arid the requirement for better models of our planet as a basis of rational
plans for the next century.
At some stage in the mechanized analysis of any sufficiently complex

problem, further progress (as indicated for example in the chapter by
Mozetie, Bratko, and Urbaneie) has to await intelligible mechanization
of the underlying relations of cause and effect. The wheel here comes
full circle. John McCarthy's paper of just 30 years ago, 'Programs with
common sense', placed at the core of AI's coming tasks the need for a
machine-oriented logic capable of expressing causality in everyday life.
Progress has subsequently been made, but in its unrestricted form
McCarthy's plan remains ambitious. By restricting the aim of mech-
anizing causal reasoning to defined domains of scientific study we may
find both a measure of tractability and also uncommon rewards.
Not the least reward must surely be the sense of mutual usefulness

among disciplines, which forms the living cement of our invisible college.

June 1990 Donald Michie
Editor-in-Chief

ACKNOWLEDGEMENTS

Our grateful thanks are due to the Estonian Academy of Sciences, in
particular the Institute of Cybernetics who hosted the meeting which
provided the basis for this volume in their beautiful city of Tallinn.
Thanks are also due to Knowledgelink (Intelligent Terminals Limited),
to the Turing Institute for help with travel and resources for the work
of editing the papers printed here, and the many who helped with the
conference organization and the editorial process. In particular we
would like to thank Irene Brebner, Pearl Guthrie, Liina Keskiila, and
Catherine McCrae.

viii

CONTENTS

MECHANICS OF KNOWLEDGE PROCESSING

1. Modularity of knowledge 3
E. TYUGU

2. Propositional logic programming 17
G. MINTS

3. Computational models in PROLOG 39
A. A. LOMP

4. On the construction of unifying terms modulo
a set of substitutions 49
S. LANGE

5. Plausible inference and negation in Horn clause logic 55
T. B. NIBLETT

6. A note on first-order theories of individual concepts
and propositions 79
B. ARBAB

INDUCTIVE FORMATION OF PROGRAMS AND DESCRIPTIONS

7. Inverting the resolution principle 93
S. H. MUGGLETON

8. Non-monotonic learning 105
M. BAIN and S. H. MUGGLETON

9. Interactive induction 121
W. BUNTINE and D. STIRLING

10. Models of inductive syntactical synthesis 139
J. BARZDIN, A. BRAZMA, and E. KINBER

OPTIMALITY AND ERROR IN LEARNING SYSTEMS

11. Deriving the learning bias from rule properties 151
J. G. GANASCIA

12. Error tolerant learning systems 169
C. SAMMUT

13. Use of sequential Bayes with class probability trees 187
D. MICHIE and A. AL ATTAR

QUALITATIVE REPRESENTATIONS OF KNOWLEDGE

14. Exploring structures: an exercise in model-based
interpretation and planning
I. B RATKO

ix

205

CONTENTS

15. Learning of causality by a robot 225
P. MOWFORTH and T. ZRIMEC

16. A qualitative way of solving the pole balancing problem 241
A. MAKAROVIC

17. Varying levels of abstraction in qualitative modelling 259
I. MozET16, I. BRATKO, and T. URBAN616

APPLICATIONS AND MODELS OF KNOWLEDGE ACQUISITION

18. Information content of chess positions: implications for
game-specific knowledge of chess players 283
J. NIEVERGELT

19. PROMIS: experiments in machine learning and protein folding 291
R. D. KING

20. Design of knowledge processing systems—
principles and practice 311
S. OHSUGA

INDEX 331

MECHANICS OF KNOWLEDGE
PROCESSING

1

Modularity of Knowledge

E. Tyugu
Institute of Cybernetics,
Estonian Academy of Sciences, USSR

When you lose a game of chess to a computer then don't pretend
that you didn't think at the game.

S. Maslov

Abstract

Merging different kinds of knowledge in problem-solving is discussed.
Several formal calculi are considered as knowledge representation
means, and uniting calculi in the NUT programming system is described.
This paper has been inspired by the last book of Sergei Maslov [1]

where he described a tower of deductive systems as a representation of
scientific knowledge about the world. He illustrated the usage of formal
calculi by numerous examples from biology, economics, and technology.

1. INTRODUCTION

We shall discuss here modularity of knowledge in the large. This is not
breaking the whole of available knowledge into uniformly represented
parts. We are interested in merging various kinds of knowledge and using
them all together for achieving some hard goal. The question is: 'How to
combine different knowledge representations and handling techniques
in problem-solving systems?'
Experience shows that no universally efficient knowledge represen-

tation and handling technique exists. On the contrary—a number of very
different methods have been developed for solving practically interest-
ing problems in various domains. When considering human intelligence
one can also distinguish basically different knowledge-handling mech-
anisms that are associated with the left and right parts of the brain, that is
with logical and intuitive ways of thinking. We can hope that using
different knowledge-handling methods in combination will help us to
improve the intellectual capabilities of Artificial Intelligence (Ai)
systems designed for practical applications.
At first glance, blackboard systems seem to be a good example of

modularity of knowledge in the large. This is true only when we are
considering aspects of implementation. Blackboard systems provide a

3

MODULARITY OF KNOWLEDGE

framework for implementing modularity of knowledge, but they do not
help us in finding suitable forms of knowledge representation.
This paper is based on an assumption that any knowledge system (Ks)

which is knowledge representation plus inference engine can be reduced
to a formal calculus that adequately represents knowledge processing in
this Ks. This statement become trivial as soon as we loosen the require-
ment of adequacy: on a sufficiently low level we can use Turing machines
or Post's systems for representing information processing in computers.
Secondly, this paper elaborates on an observation that any successful

Al system contains more than one Ks, that is it is based on several calculi
combined with each other in non-trivial ways. The latter means that
there is no obvious natural way to build a single calculus preserving the
requirement of adequacy. Putting together calculi of various knowledge
systems mechanically would give us a tower of Babel of formal
languages—a calculus that is incomprehensible as well as inefficient.

Nevertheless, all purely procedural forms of knowledge can be
represented by a single calculus. Any representation of computable
functions together with application rules for functions can be used for
this purpose (Markov's normal algorithms, recursive functions, etc.).
Let us call the calculus chosen the calculus of computable functions
(ccF). It seems that CCF is present in any sufficiently general knowledge-
based system, because procedural knowledge is a convenient means for
providing extensibility to a knowledge-based system.
As soon as we intend to apply procedural knowledge automatically,

another calculus is needed for invoking programs. We have good
examples of systems where two calculi are used, one for procedural
knowledge and another for control of computations. PROLOG combines
Horn clause logic with CCF, structural synthesis of programs uses
intuitionistic propositional calculus (ipc) for control and CCF for the
procedural part.
We have developed programs that contain more than two KS's. The

system PRIZ [2] and MicroPRiz [3], besides the CCF and IPC, also use a
rewriting system as a user-friendly front end. It transforms specifications
written in a high-level specification language into a set of specific axioms
of a formal calculus.
One more calculus is added to those mentioned above in the systems

ExpertPRiz and NUT [4]. ExpertPRiz is an extention of MicroPRiz that
combines inductively built knowledge bases supporting simple decision-
tree logic with the three calculi of PRIZ. The NUT system combines first
order calculus of productions with PRIZ calculi.

2. FORMAL CALCULI AS KNOWLEDGE REPRESENTATION
MEANS

There are many papers on using logic for knowledge representation [5].

4

TYUGU

Our thesis is that in all cases when we use knowledge, making inferences
step by step, we can build a calculus that represents this knowledge and
the inference engine. It is obvious that this thesis cannot be proved
formally. However, looking at numerous examples we can find good
evidence in favour of this thesis. First of all, making inferences means
using knowledge in a deductive way, and in his book [1], Maslov has
described a number of calculi, called also deductive systems, which are
formalizations of knowledge in various domains. He has defined the
concept of calculus in a very general way that suits us well:

There are a certain number of initial objects and a certain number of rules for
generating new objects from the initial objects and from those already constructed. To
put it another way: There are an initial position (state) and 'rules of the game' (rules for
transition from one state into another). A system of this kind is called a deductive system,
or a calculus.

Let us consider semantic networks as an example of knowledge
systems and let us try to build a calculus for them. There are various
kinds of semantic networks and different inference mechanisms for
working on these networks.
Bearing in mind that any semantic network is a marked graph, we can

represent it as a collection of arcs. For instance, Figure 1 shows a
representation of explicit and implicit time-relations in the following
text:

John must pick up his report in the morning and have a meeting after
lunch. After the meeting he will give the report to me.

The arcs of the network will be objects of the calculus we are building.
In this example we have the following objects:

before (lunch, morning)
after (morning, lunch)
after (lunch, have a meeting)
after (have a meeting, give)
at-the-time (morning, pick up)

morning

before

lunch

at-the-time after

pick up after

Figure 1. Time-relations.

5

MODULARITY OF KNOWLEDGE

Sometimes it is more convenient to use another representation of the
network, looking at nodes as relations that bind all their neighbouring
nodes. In this case the objects will be nodes, used as relations between
the other nodes (their neighbours).
Inference on a semantic network is done by propagating facts (or,

more generally, 'pieces of knowledge') along the arcs of the network. As
a result, the network itself or the marking of its nodes is changed.
Inference rules, as usual, are schemes of the following form:

S S,, I- S

where objects SI, . . , Sk are premises and the object S is a conclusion. In
our case there are rules for transitivity of some time-relations, for
instance:

before (x,y), before (y,z) F before (x,z).
after (x,y) F before (y,x).
at-the-time (x,z), before (y,z) F before (y,x).

Applying these rules we can make inferences like:

after (lunch, have a meeting) F before (have a meeting, lunch) at-the-
time (pick up, morning), before (lunch, morning) F before (lunch,
pick up)

and add new arcs to the graph.

3. HOW TO COUPLE CALCULI?

First of all, let us consider briefly the implementational aspects of
coupling different calculi. There are well-known ways of implementing a
system which consists of several interacting experts:

(1) building a network of communicating actors (processes, experts)
[6];

(2) using blackboard architecture [7, 8, 9];

(3) using broadcasting as a means of communication between the
experts.

All these ways can be used for writing knowledge systems, each of
which will be then represented as an 'expert' with its own knowledge
representation forms and inference engine.
A network of experts can be efficient for loosely coupling several

knowledge systems. Object oriented programming is suitable for this
purpose, because message passing can be directly used for communica-
tion between the KS's. Actually, any tools for programming communicat-
ing sequential processes can be used.

6

TYUGU

Another way to achieve the same goal is to use 'broadcasting'. In this
way we can organize knowledge systems to show collective behaviour
that mimics the behaviour of a group of co-operating human experts.
The closest co-operation between the knowledge systems can be

provided in a blackboard system. In this case, a considerable amount of
knowledge (the blackboard) is visible for all knowledge systems. The
question remains, how does each Ks understand the knowledge on the
blackboard? But this is one of the principal questions that need to be
considered when writing the Ks.

In order to choose one or other of the architectures we must consider
the principles of writing a Ks. Some useful hints can be obtained from
pure logic.
In proof theory we can find examples of successful decomposition of

theories. Roughly speaking, sometimes a theory can be split into several
parts, so that different inference methods can be applied and efficiency
of search can be significantly improved. The following two techniques
are worthy of mention:

(1) constructing a set of admissible inference rules;

(2) using a metatheory.

Both these techniques have analogies in knowledge-based systems.
Yet another useful way of combining calculi comes from logic. Let us

take a constructive non-categoric theory (that is, a theory that has more
than one model). Models of constructive theories can again be con-
sidered as calculi. So we have a non-trivial relation of interpretation ('to
be a model of') between the calculi. Probably the relation of interpreta-
tion is the most widely used relation between the calculi in knowledge-
based systems.
In papers on algebraic data types which are represented as hetero-

geneous algebras, we can find a number of relations between algebras
[10]: abstraction, concretization, extension, restriction, enrichment, etc.
To an extent, these relations are also meaningful for calculi of knowledge
systems.

4. UNITING LOGIC WITH PROCEDURAL KNOWLEDGE

A good example of uniting logic and procedural knowledge is PROLOG. It
combines Horn clause logic (ncL) with a procedural knowledge system
(ccF). Connection between the nu, and the CCF in PROLOG is established
through the realization of functional constants and some predicates as
pre-programmed procedures.
A text in PROLOG, that is, the logical part of a PROLOG 'program' con-

sists of clauses

A & & B C

7

MODULARITY OF KNOWLEDGE

where every negative atom A, ... , B must have a predicate that also
occurs in a positive position of some clause or that has a clearly pro-
cedural realization. Let us consider an atom P(ti, , t„). The terms to
. . . , t„ are either variables, or they are expressions containing constants
that must also be realized in the CCF. The elegance of PROLOG comes from
the successful combination of Hci., and CCF. From one side, the logical
part (Hct.) uses the procedural part (ccF) only as an oracle and exercises
a complete control over the order of execution of procedures. From the
other side, every predicate occurring in the positive position of a clause
can be used in the same way as pre-programmed predicates. That means
that new 'realizations' of predicates can be written in PROLOG, and only
procedurally 'tricky' programs must be implemented directly in CCF.
These are the programs that, for instance, interact with the computa-
tional environment of a PROLOG system or use terms t1, , t2 of a
predicate in a way that is out of the scope of PROLOG logic (for example as
higher order objects).
We can observe another case of uniting logic with CCF in the PRIZ

system [2]. In this case, the logic is intuitionistic propositional calculus
(Pc). For readers unfamiliar with the IPC I should like to stress that it is
more complex than classical propositional calculus—roughly speaking,
because its formulas can more seldom be reduced to each other than in
classical logic. (The equivalence —1 —1 a+.ct is not valid in 'pc.) The proof-
searching in IPC is a P-space complete problem. One can say that
formulas of IPC represent types of complicated objects like functions of
functions of functions and so on.

Actually, only a fragment of 1PC is used as a logical language in the PRIZ
system. This fragment contains the formulas of the following form:

& . . . & Xk Y,

or, abbreviated

X— Y; (1)

and (IP-. V') &... &(U'n Vm)-. (X Y),

or, abbreviated

(U—V)—(X— Y) (2)

This fragment has the expressive power of the complete IPC in the
sense that, for the purposes of theorem-proving, any formula of IPC can
be represented as a set of formulas of the form (1), (2) by introducing
new variables.
Knowledge about a concept (object, situation, or process) is

represented in the PRIZ system as a set of formulas of the form (1), (2)
and it is called a computational model. This knowledge is used for

8

TYUGU

solving problems, employing the schema

computational model- proof -b program,

where proof of solvability of a problem is derived from a computational
model in IPC. This constructive proof is used as a schema of a program
that solves the problem.
Connection between the !PC and the CCF is established by giving a real-

ization of any derivable formula of IPC in the form of a formula of CCF.
(This realization is a computable function.) If we write the function
associated with an implication under the arrow of the implication, then
we shall have the formulas that show explicitly the connection between
the logic and CCF in PRIZ:

x 7 Y,

(U V)-. (X Y).

Functions associated with the formulas of a computational model
(which are axioms) must be predefined. Functions for derived formulas
are constructed at every step of derivation from the functions associated
with the premises.
As in PROLOG, the logical part of the PRIZ system (ipc) completely

controls the order of execution of programs represented in CCF. Besides
that, the logical part shows precisely how types of objects of CCF are
related to each other, and these types can be of any finite order.

5. CALCULUS OF INHERITANCE

While PROLOG is still more or less suitable for direct representation of
knowledge by users, the logical calculus of PRIZ is completely inappro-
priate for this purpose. In order to facilitate knowledge representation
by human experts, a metalanguage for specifying theories represented in
IPC was developed and it is used as an input language of the PRIZ system.
This is an example of a high-level knowledge representation language
with the semantics precisely described by a simple calculus, see also [11].
A specification in this language is of the form

a :t

where a is a new identifier and tis a type specifier. It can be either a direct
specifier or an inheritance specifier.
The direct specifier has the following form:

(copy ci; .; copy cm; xl: t1; . . .; xk: tk; (relations)).

A new object specified by the direct specifier

9

MODULARITY OF KNOWLEDGE

(1) - inherits all properties of objects c1,. , cm;

(2) gets components , xm with the properties specified by , tk
(any xi: ti is a specification);

(3) obtains properties given by relations.

The relations are either equations or axioms of IPC with given realiz-
ations. Outside the object a, its components xi, , xk will have com-
pound names a.xl, , a.xk.
The inheritance specifier has the form:

Y = , • • • , Yn = vn

where y is the name of an object which has already been specified, Yi ,
y„ are some of the components of the object y, and v1, . , v„ are either
constants or names of some other objects.
There are predefined objects numeric, boo!, and so on which can be

used as primitive specifiers. One of them, any, is of special importance. It
enables us to build generic objects. A component yi of this type can be
used in an equation yi = v, of the inheritance specifier with the object v, of
any other type, and then it acquires for itself the type of vi. For instance,
having specified

stack: (... ; elem: any; . . .)

and provided a pointer is an object, we can build a stack of pointers

pointerstack :stack elem = pointer.

This language enables us

(1) to build hierarchically structured objects:

(2) to use multiple inheritance;

(3) to describe specific features of objects by means of relations.

This last feature is still obscure. The explanation is given below.
Let us define a calculus in which, for any specification S, a com-

putational model M(S) (that is, a set of axioms of the form (1) (2)) is
derivable which determines the possible computations specified by S.

First of all, for any object x we introduce a statement

'xis computable'

and denote it by the propositional variable X. (We shall use only lower
case letters for denoting objects, so we can use the capital letters for the
corresponding propositional variables here.)
Let, for any object t, M(t) be its computational model and M(t) f is

obtained by substituting X instead of T for every occurrence of T in the
left-most position in names of propositional variables.

10

TYUGU

Let us define the following function called 'sem':

(1) For any primitive object t, M(t) is empty.

(2) sem (x:t) = M(t)iv

(3) sem (copy t) = M(t)

(4) For any equation E
sem (E)=IX, & . . . & & Xi+, & & I the equa-
tion E is solvable for x, 1

(5) for any axiom A
sem (A) = {A}

(6) sem (x:(Si; ; Sk)) = X. Y, , X.Z,X. Y& & X.Z — X1 U
U sem(Si) U U sem(Sk)

where S1, , Sk are of one of the following forms

— copy c,
— y:s,
— relation,

Z are all propositional variables, associated with components of
x.

It is easy to check that by applying the rules (1) to (6) for the function
'sem' as rewriting rules we can reduce any specification S to a set of
axioms of the form (1), (2). This set is the computation model M(S) of
the specification S. This establishes the connection between the high-
level knowledge representation language and IPC.

6. USING METATHEORIES

There is always a conflict between the generality of a calculus and the
efficiency of derivation in it. The more specific the calculus we build, the
better methods we can find for making inferences in this calculus.
However, we also need some means of representing general knowledge,
and this is a reason for coupling calculi of different generality. Another
reason is more straightforward. Looking carefully at derivations in some
calculus, we may discover some general laws of derivation which cannot
be explicitly expressed in the calculus itself. This will lead to construc-
tion of a metatheory about the calculus, that is, a new calculus, objects of
which are somehow related to the initial calculus, and which can help to
improve the efficiency of search in the initial calculus.
We shall demonstrate the use of general knowledge with the following

simple example. Let us have a concept of 'person', described in the
knowledge representation language of the previous section as follows:

11

MODULARITY OF KNOWLEDGE

--person: (name: text;
sex: text;
age: numeric;
father: person;
mother: person)

Let us also have an intelligent data base of people where we can make
inferences about persons and about sets of persons. In particular, we
assume that this is done in IPC using the semantics described in the
previous sections. Only two relatives, mother and father, are represented
directly in the concept of a person. But we should like also to represent
other relatives of a person, such as grandfather, uncle, mother-in-law,
and many others. In order to define relationships of that kind in general,
we need a first order calculus. Then we can write in a straightforward
way:

father (x,y) — parent (x,y)
mother (x,y)— parent (x,y)
father (x,y) & parent (y,z) — grandfather (x,z)

and, for instance, having facts

father (John, Jack)
father (Jack, Jean)

can infer

grandfather (John, Jean).

Now we have two separate calculi for making inferences:

(1) a first order calculus for handling kinship relations;

(2) IPC for handling computability relations as described in section 5.

The question is: how do we couple them so as to use these two calculi
jointly? In the NUT system [4] we have applied the schema shown in
Figure 2. In addition to the usual semantics of specifications (arrow 1)
there is another way, denoted by the arrows 2, 3, and 4. Specification is
used as a source of facts. Using rules like those for grandfather, new facts
are derived in Horn clause logic. These facts are represented as
additional specifications in the high-level language and used further on
as any other specification (arrows 5 and 6). The essential points are:

(1) specifications which are objects of the calculus 'sem' are sources of
facts for the Hci..;

(2) new facts derived in Hu, give new specifications which give sets of
axioms of 1PC.

12

!JCL

Specification 4

language sem

of the user 1

Figure 2. Calculi of NUT.

15

IPC

16

CCF

TYUGU

Let us demonstrate this on a problem where, given the following
information:

Tom: person
John: person
Jane: person

age = 55
father = Tom;
father = John;

we have to find Jane.grandfather.age. This can't be done in IPC and CCF.
But we can solve the problem, using HCL to derive the new fact

grandfather (Tom, Jane)

which is further on transformed into the following specification

R001: grandfather Tom, Jane

and added to the speCification of Tom, John, and Jane. This is how the
system NUT uses HCL as a metacalculus for extending, firstly, specifi-
cations, and thereafter the set of axioms given in IPC.
For the example considered here we could also represent all the

knowledge in a first order calculus, because the amount of knowledge is
small. This is not the case in general. In particular, in CAD applications,
thousands of axioms are needed for representing knowledge about
computability [12], and the fragment of IPC which we use is a good
choice due to the efficiency of inference.

7. DISCUSSION

What we have described in previous sections is the schema of connec-
tions of calculi used in the programming system NUT [4]. This schema is
represented in Figure 2. A user supplies knowledge in a high-level
knowledge representation language mostly for 'sem'. But the user must

13

MODULARITY OF KNOWLEDGE

give some knowledge also as programs in CCF and as rules in HCL. Knowl-
edge is represented in the form of specifications of concepts. A specifi-
cation of any concept can contain knowledge for the three calculi, and
knowledge about a concept is stratified into three layers (see Figure 3).

(1) knowledge about structure and components, used directly in 'sem';
(2) knowledge about computability, used in IPC;

(3) general knowledge, used in no_

concept 1 concept n
general
rules (HCL)

• • • relations (IPC)

structure and
components (sem)

Figure 3. Stratification of knowledge.

A considerable amount of search is needed for making inferences in two
calculi, Hu. and IPC, whereas the calculi 'sem' and CCF can be used
without backtracking. It appeared that dividing search between two
calculi can be useful even when both calculi are propositional. This
experience was gained from the system ExpertPRiz [12]. The diagram of
calculi of this system is represented in Figure 4. This system is a
combination of an inductive expert system operating in a propositional
calculus called ES, and a program synthesizer, containing the calculi
'sem', IPC, and CCF. This synthesizer operates in the same way as the
program synthesis part of the NUT system. The effect is obtained because
the ES calculus operates 'in the large': it makes short inferences, but gives
large sets of new axioms for IPC. In this case, the ES is transparent to the
user who can understand its logic and can control the inference. The cal-
culi IPC and CCF operate on a lower level of the ExpertPRiz system—on a
level which is opaque to the user. There are only a few programmed
functional constants in ExpertPRiz and a user does not write any new
programs. Implementations of axioms are derived from equations
written in the knowledge representation language; this is denoted by the
dotted arc from sem to CCF in Figure 4.
There are a number of other knowledge-based systems that combine

several calculi. Truth maintenance systems (TMs) [13] and augmented
truth maintenance systems (Arms) [14] essentially use the idea of
coupling two calculi. The basic idea of TMS and ATMS is to extend the
capabilities of an automatic problem solver by coupling it with an auto-
matic logician, TMS (or Arms) which can do non-monotonic reasoning.
The logician receives assumptions and facts from the solver and, using

14

ES

specification sem

I
\

iPC

I

CCF

Figure 4. Calculi of ExpertPRtz.

TYUGU

this knowledge, controls to some extent the behaviour of the solver,
preventing it from inconsistency and useless search.
The extending of PROLOG is another area where attempts are made to

unite several calculi. PROLOG itself unites tic and CCF very elegantly. But
this elegance makes it difficult to add anything to PROLOG, in particular,
new calculi. Any attempt to extend PROLOG substantially by adding a new
calculus has led to eclectic solutions up to now. However, meta-
computations seem to be a promising way for extending PROLOG. In
particular, there is an interesting extension of PROLOG which enables one
to use it in a way analogous to the usage of the PRIZ system [15]. But in
this case PROLOG is used as an instrument, so that the calculi of PRIZ are
simulated in PROLOG: HCL is used for simulating 'sem' and IPC.
The examples considered here have not covered the whole variety of

knowledge-based systems which use more than one calculus each: it is a
topical theme in expert systems research to unite several calculi. The
aims of this paper have been:

(1) to draw attention to the fact that there are successful applications of
the paradigm of the modularity of knowledge in the large by
combining several knowledge systems;

(2) to outline a direction of research in the context of knowledge
systems as formal calculi.

REFERENCES

1. Maslov, S. Yn. (1987). Theory of deductive systems and its applications. MIT Press,
Cambridge, London.

2. Mints, G. and Tyugu, E. (1987). The programming system PRIZ. J. Symbolic
Computations, No. 4.

3. Koov, M. etal. (eds.) (1986). MicroPRIZ—Intelligent software systems. Acad. Sc. of
the ESSR, Tallinn.

4. Tyugu, E. etal. (1986). NUT—an object oriented language. Computers and
Artificial Intelligence, 5, No. 6, 521-42.

15

MODULARITY OF KNOWLEDGE

5. Moore, R. C. (1982). The role of logic in knowledge representation and
commonsense reasoning. Proc. of the AAAI 82, Pittsburgh, Pa, pp. 428-33.

6. Greif, I. and Hewitt, C. (1975). Actor semantics of PLANNER-73. Proc. of 2nd
ACM Symposium on Principles of Programming Languages, NY, ACM, 67-77.

7. Nii, P. (1986). The blackboard model for problem solving. Artificial Intelligence, 7,
No. 2,38-53.

8. Nii, P. (1986). Blackboard systems part two: blackboard application systems,
Artificial Intelligence, 7, No. 3.

9. Hayes-Roth, B. (1985). A blackboard architecture for control, Artificial
Intelligence, 26,251-321.

10. Wirsing, M., Pepper, P., Partsch, H., Dosch, W. and Broy, M. (1983). On hierarchies
of abstract data types. Acta lnformatica, 20, 1-33.

11. Mints, G. and Tyugu, E. (1986). Semantics of a declarative language. Information
Processing Letters, 23, 147-51.

12. Tyugu, E. (1987). Merging conceptual and expert knowledge in CAD, Expert
Systems in Computer-Aided Design, North-Holland. pp. 423-34.

13. Doyle, J. (1979). A truth maintenance system, Artificial Intelligence, 12, 231-72.
14. de Kleer, J. (1986). An assumption-based truth maintenance system, Artificial

Intelligence, 28, No. 2,127-62.
15. Lomp, A. Computational models in PROLOG. This volume.

16

2

Propositional Logic Programming

G. Mints
Institute of Cybernetics,
Estonian Academy of Sciences, USSR

1. INTRODUCTION

We describe the application of propositional (mainly intuitionistic and
modal) logic in logic programming. Logic programming is understood
here in the broad sense of non-procedural programming in terms of
logical specifications (Tyugu 1986), so that the compilation of the result-
ing program (i.e., program synthesis) is performed essentially by means
of automatic proof search in a suitable logical system. We review the
logical features of the programming system PRIZ developed at the
Institute of Cybernetics of the Estonian Academy of Sciences. More
detailed descriptions of the system architecture and proofs of some
results can be found in Mints and Tyugu (1982, 1987).
The most familiar (and for many people the only) example of logic

programming is Horn clause programming in first order predicate
calculus which forms the logical base of the PROLOG language. Unfor-
tunately it is impossible to identify PROLOG with Horn clause program-
ming in view of numerous non-logical devices that are included in
PROLOG in order to turn it into a viable programming language.

Propositional Horn clause logic is used in a number of program
synthesis systems beyOnd PROLOG. The most developed of such systems
known to the author is PRIZ. In fact the logical base of PRIZ is also more
powerful than propositional Horn clause logic, but in another direction
than in PROLOG: the planner (program synthesizer) of PRIZ is the com-
plete procedure for the intuitionistic propositional calculus. The latter is
known to be P-space complete, and one cannot expect good compu-
tational behaviour in the worst case. So as a programming short cut,
independent subtasks have been introduced to speed up solutions of
some problems arising in practice. It turned out to be complete for the
corresponding fragment of the modal logic S4. Yet another short cut
proposed in Kanovich (1985), but not implemented in PRIZ, turned out
to be equivalent to the modal system SO.5
Another synthesis strategy in PRIZ permits the construction of recur-

sive programs. Formalization of this strategy presented in Harf et al.
(1983) has been obtained by introducing some syntactic restrictions
to an absolutely inconsistent system (where any formula is derivable).

17

PROPOSITIONAL LOGIC PROGRAMMING

Something of this kind was to be expected since a recursive program can
be partial, while any program synthesized according to the previous two
strategies is (provably) total. In fact the basic rule of the recursive
synthesis was found by suppressing the predicate structure in the
familiar schema of transfinite induction

(Vy)((Vx < y)Ax Ay) (V x)Ax.

More details and examples of application of this strategy are presented
in Mints and Tyugu (1982).
PRIZ combines conventional programming technique with automatic

synthesis of programs from specifications. Its input language UTOPIST
(Universal Translator Of Problems Including Specifying Texts) enables
one to write specifications. Such a specification is automatically encoded
into propositional calculus and used by the system for program
synthesis.
Both PRIZ and PROLOG exploit the structural similarity of constructive

proofs and programs and build a program by proving solvability of a
problem. The PROLOG system works in first order predicate calculus and
uses the resolution principle. Pure PROLOG handles objects of types zero
and one (individuals and predicates). The logic of the PRIZ system is
restricted to the propositional level. However implicitly it uses lambda
calculus of finite type.
Today PRIZ is a program product installed on more than 1000 Ryad

computer mainframes; it was originally developed as a practical pro-
gramming system, and the Russian abbreviation is translated as
'programs for solving engineering problems'. Its logical background is
invisible for a practically-minded user. From the user's point of view
UTOPIST is essentially a non-procedural language.
We start our representation of the PRIZ system with a general descrip-

tion of its architecture in Section 2. Thereafter we describe the non-
procedural part of its input language UTOPIST which is intended for
writing specifications. In Section 3 we briefly discuss the logical basis
of the PRIZ system, giving propositional semantics of specifications.
Section 4 treats the structural synthesis of programs. An experiment
with the synthesizer when all intuitionistic propositional theorems from
Kleene (1952) have been proved is discusssed in Section 5; this section
summarizes the paper Matskin etal. (1982). The last Section, 6, contains
detailed treatment of the logical background of propositional program
synthesis with independent subtasks.
Appendices contain formulation of the proof rules and program

extraction rules of PRIZ as well as an example of the work of the system.

2. SYSTEM ARCHITECTURE AND INPUT LANGUAGE

Since automatic program synthesis is the main distinctive feature of

18

MINTS

PRIZ, we present the system here mainly from that angle. The part of the
PRIZ system we describe here is intended for processing problem state-
ments of the form

MI-xl,...,xk—y (1)

which means 'knowing M compute y from x1, , xk', that is, it
represents a computational problem. The following is an example of the
problem statement:

triangle I- a, b, c alpha.

Actually, PRIZ proves the solvability of the problem and from this proof
derives a program, which calculates the value.
An essential part of the system is the knowledge base. It contains

specifications of concepts and it is easily accessible by a user who can
manipulate knowledge by adding specifications of new concepts and by
editing the existing specifications.
The principal part of the PRIZ system is a synthesizer which translates

a problem statement (1) into a program that performs the task described
by this statement. Besides the problem statement, the synthesizer takes
the following as input:

(1) the internal representation of the specification of M, which we call
the problem model;

(2) programs and equations that realize the functional constants used in
the problem model.

By proving solvability of the problem, the synthesizer builds the
schema of a program for solving it. Thereafter, it assembles the program
from solving functions of equations and program modules from the
library. This program can be applied immediately for computations, or it
can be used in a conventional programming system like any other
program module.
The UTOPIST language appeared in 1974 as a problem specification

language and it obtained its more or less final shape in 1977 (Kahro et aL
1981, Mints and Tyugu 1982). The specifications in UTOPIST represent
abstract objects (concepts) which can be used for creating concrete
objects (data structure): see examples below. Only concrete objects
possess values. An abstract object is a carrier of information about the
properties of concrete objects and in this sense it is analogical to a class
in an object-oriented language.
The goal of a user is to specify an abstract object M, which enables the

program to be represented by the problem statement (1).
We are going to illustrate by a series of examples the declarative non-

procedural part of UTOPIST, that is the part which is used for specifying
abstract objects. A more detailed and precise description is in the paper
by E. Tyugu in this volume.

19

PROPOSITIONAL LOGIC PROGRAMMING

-'Simple examples of specifications are

point: (x: numeric;
y: numeric)

and

bar: (Pl: point;
P2: point)

length: numeric;
angle: numeric;

length 2 = (P 1.x — P2.x)^2 + (P 1.y — P2.y)^2;
length*sin(angle) = P2.y — Pl.y

The two equations specify the properties of a bar operationally, by
expressing relations of its components so that they can be used for
computing the values of coordinates, the length, or an angle, depending
on the problem statement.
A compound specifier (like point or bar) represents an object that can

contain other objects which are then called its components. Compound
names can be used for naming components of an object. A component a
of an object b is called b.a outside of b. If b, in its turn, is the component
of an object c, then outside of c, the name of the inner object is c.b.a, and
soon.
A relation can be either an equation or an axiom with realization. In

the case of an equation the system takes for granted that every variable
occurring there can be computed from the remaining ones. There are
various implementations for solving equations: numeric, symbolic, and
also user-supplied.
A relation given by the axiom with realization has the form

X Y (f)

where f can be the name of a program from the program library com-
puting Yfrom X (some details are given later),
Consider the following specification.

matrix: (m: text;
e: numeric;
i: numeric;
j: numeric;
create: —nz(A);
put: m, j, e m(B)
get: m, i j— e(C));

This abstract object represents a matrix and it can be used as an
abstract data type. Here A, B, and C are names of the programs which
are respectively realizations of the relations 'create' (the matrix), 'put'

20

MINTS

(an element eat the place i, j in the matrix m) and ̀get' (an element from
the place i, j in the matrix m).
A new object can be specified by the name of an abstract object

followed by amendments which bind components of the object. For
instance, having specifications of a point and a bar, we can write

P : point x = 0;
AB: bar length = 15, P1= P;

The meaning of amendments x = 0 and length = 15, is obvious. The
'amendment P1 = P in the specification of the bar AB means that the
point P1 of the bar AB is the same as point P specified above.
Let us consider an example of a problem shown in Figure 1. The

distance v must be computed depending on the value of the angle u. We
can specify this problem as follows:

mech: (u : numeric;
V : numeric;
AB: bar length = 0.7, P1= (0, 0), angle = u;
BC: bar length = 1.5, P1= AB.P2, P2.y = —0.5, P2.x = v)

The problem

mech v

is solvable and the algorithm built by the PRIZ system where justification
of each step is also shown is given in Appendix 3.

Figure 1. Problem to be solved by PRIZ system.

3. AXIOMATIC SEMANTICS OF SPECIFICATIONS

A precise representation of the semantics of UTOPIST can be given by
means of a simple language which is a restricted (but still universal) form
of the intuitionistic propositional calculus. The propositional variables
X, Y, etc. express the computability (existence) of values of objects

21

PROPOSITIONAL LOGIC PROGRAMMING

presented by a specification. Let us denote the objects by small letters: a,
b, x, y, al, a2, . For any object x we introduce a propositional variable
X which denotes the computability of x. (X is true if xis computable or x
already has a value.) The language includes only propositional formulas
of the following forms:

& & Xk-• Y, (2)

or in a shorter way:

Y;

as well as

(3)

or in a shorter way:

(U— V) — (X— Y).

From the computational point of view these implications can be con-
sidered as functional dependencies. The formula (2) can be read simply
as Y is computable from X1, . . . , Xk'. The formula (3) expresses
functional dependency of higher order (with function as argument) and
can be read I' can be computed from X and a function realizing
(U —V)'.
To analyse the solvability of the computational problem given by a

problem statement (1) and to find the applicative structure of the
resulting program, only the purely propositional structure shown ex-
plicitly in (2), (3) is essential. However, to write the resulting program in
all details, formulas (2), (3) have to be expanded as follows:

X -0Y (4)

and

(U--; V) — (XivY), (5)

where g= gi, . , gm.
Functions f, F in (4), (5) are realizations of (2), (3) respectively. The

formula (4), for example, means that the realization of Y can be com-
puted from the realizations of X by means off or that fis a procedure for
computing y from x. The formula (5) means that the procedure F
produces from any functions g computing v from u some new function
F(g) computing y from x.
Since any computational model consists of specifications, it is suf-

ficient to define a function 'sem' which, for any specification S, computes
a set sem(S) of formulas of the form (4), (5) which are axioms that
describe the possible computations according to the specifications S. (A

22

MINTS

computation with input variables xl, , xk, and an output variable y is
possible according to the specification S if and only if the formula
& . & Xk is constructively derivable from sem (S).) See the

paper by Tyugu in this volume for details.

4. PROGRAM SYNTHESIS

The synthesizer of PRIZ employs the schema

SPECIFICATION -+ PROOF PROGRAM. (6)

Input data for step I are produced by the function 'sem' mentioned
above in the form of a sequent 1-F (P Q) with F (the axioms) being the
list of propositional formulas (2), (3). The proof is a formal derivation of
P Q from F according to the so-called Structural Synthesis Rules (ssR)
listed in Appendix 1. Its structure and the search strategy is best
illustrated for the case when all axioms in r are of the form (2). Then one
proceeds stepwise by gradually enlarging the set C of computed vari-
ables. Initially this set C for the goal sequent F P Q consists of P
(since its computability is assumed) and the variables given as separate
members of F. Each search step simply adds to C all conclusions Y of a
formula (2) if all premises X1, , Xk of this formula are already in C.
Then the formula (2) used in this way is simply discarded. The goal
FI-P—Q is proved if Q is eventually included in C. This proof search
can be organized so that it is completed in linear time.
In the case when axioms of the form (3) are present in F, the proof

search is more complicated and the resulting system turns out to be
equivalent to the intuitionistic propositional calculus (Mints and Tyugu
1982).
Step II of the schema (6), that is, the extraction of the program from a

constructed proof uses the same basic ideas as the standard intuitive
interpretation of the intuitionistic system. Expanded versions (4), (5) of
the formulas (2), (3) are used here to assign typed lambda-terms (realiz-
ations) to the axioms from r, which are starting formulas (leaves) of the
proof (tree). Then we can proceed along the applications of the rules
assigning realizations to further formulas. This assignment (see Appen-
dix 2) uses a device traceable to the Heyting—Kolmogorov interpretation
of intuitionistic connectives, or more precisely, the Kleene realizability
(Kleene 1952). The lambda-term assigned to final formula P Q is the
schema of the required program.
To illustrate this, let us consider a specification for finding the row in a

matrix, the maximal element of which has the minimal value among
maximal elements of all rows. First of all we define a concept of
'maximum':

23

PROPOSITIONAL LOGIC PROGRAMMING

max: (
arg: numeric;
fun: numeric;
maxval: numeric;
(arg -• fun) -0 maxval (D))

We use here a program D for representing a relation specified by the
axiom

(arg — fun) maxval.

This relation binds the maximal value of a function with the function
itself represented by the subformula

arg— fun.

The concept of 'minimum' can be specified by using the same program
D:

min: (
arg: numeric;
fun: numeric;
negfun: numeric;
minval: numeric;
maxval: numeric;
negfun = —fun;
minval = — maxval;
(arg negfun) maxval (D)).

And the specification of the desired concept 'minimax' is as follows:

minimax: (
value: numeric;
m: matrix;
rl: max arg = m.j, fun = m.e;
r2: min arg = m. i, fun = rl.maxval,

maxval = value).

The minimax problem can be represented in logical language by the
following three axioms, where the propositional variables M, I, J, E, and
MAXINROW denote computability of a matrix, of its number of row,
column, element, and maximal element in a row. The variable MINIMAX
denotes computability of the desired result of the problem.

M84184-1 —get E
(J —E) nTa7 MAXINROW

(V' MAXINROW) n' °I MINIMAX

These three axioms are a complete specification for synthesizing a

24

MINTS

program that finds the minimal value of maximal elements of rows in a
matrix.
The proof of solvability of this problem is

M&I&J—E —E) MAXINROW

M&/—* MAXINROW (I— MAXINROW) —• MINIMAX

M MINIMAX

The complete program of this problem is

i,j))).

5. USE OF THE PROGRAM SYNTHESIZER AS A
THEOREM PROVER

The program synthesizer (planner) of the programming system PRIZ has
been used to produce natural deduction proofs of all intuitionistically
derivable formulas from Kleene (1952) and to disprove underivable
ones by exhaustive search for proof. This was made possible by the
discovery (Mints and Tyugu 1982) that the planner is the complete proof
search procedure for the conjunction—implication fragment of depth 2 of
the intuitionistic propositional calculus, and could be extended to the
whole calculus by adding a simple preprocessor working in quadratic
time.

5.1. Preprocessor

Let us describe several transformations of the formulas of the intuition-
istic propositional calculus (im) leading eventually to a form suitable for
the planner of PRIZ and used in the preprocessor. The main ideas of
these transformations can be traced to the logical works of the thirties
(see Wajsberg 1938).

5.1.1. Depth reduction

New propositional variables are introduced for complex formulas to
reduce the total depth. If the formula F[A] contains complex formula A,
then the transformation

F[A] I (X 4-.A)' F[X] (1)

is applied to move A outside. Here X is a new propositional variable
which replaces A inside of F, and (X •-.A)' is an equivalent form of
(X »A). More precisely,

25

PROPOSITIONAL LOGIC PROGRAMMING

(X.-.A&B)' = (X -.A) & (X B) & (A— (B -•X))
(X — AVM' = (A— X) & (B X) & (X-' (AVB))
(X —A— B)' = (X— (A— B)) & ((A-..13) —X)
(X.- (A— BW = (X— (A-. B)) & (X — (B -.24)) &

((A-'B)-((B -A)-'X))

5.1.2. Elimination of negation and disjunction

Negation A is replaced by (A -'L) after which L is eliminated by
replacing the whole formula

F[L] by (L. K&Z)' F[L]

where L and Z are new propositional variables and K is the conjunction
of all propositional variables in E
Up to this point all transformations increase the length of the formula

linearly.

5.1.3. Elimination of disjunction

Previous transformations leave no L and disjunctions only in the form
(X -.BVC) to the left of the (main) arrow. Now replace

(X BVC)

by

&z((B • Z) ((C--°Z)-+Z)),

conjunction being taken over all variables Z in the whole formula.
The transformations just described enable one to put the formula (to

be tested for provability) into the form

r --•p (2)

where p is a propositional variable and r is a conjunction of formulas
having one of the following forms

Al &...&Ak--.B1&...&B1,1c0,11,Ai,Bj
propositional variables (3)
R1 & & Rm & & Sn, m,n >0, Ri,Sj
being of the form (3).

5.2. The experiment

Natural deductions found by the PRIZ planner are presented in so-called

26

MINTS

Fitch form. Assumptions are marked by the symbol] (to be read
assume). Consequences of an assumption arg placed under it. Some-
times an indication (analysis) is placed at the right, explaining which
passage rule was used. Recall that natural deduction of implication A— B
by means of implication introduction rule (-.+) proceeds by intro-
duction of assumption A, deriving consequences and subsequent dis-
charge of an assumption A when the goal B is achieved. This latter step
is indicated by placing A— B below the whole derivation of B from A.
Other natural deduction rules are elimination of implication (—) and
introduction and elimination of conjunction. Consider for example the
derivation of the sequent (A-+B),(B —C),AF C which is just another
form of the formula (A— B)&(B -.C)&A-. C.

1. }24-.B (Assumption)
2.]B -C (Assumption)
3.]A (Assumption)
4. B (from 1,3 by —)
5. C (from 1,3 by)

5.2.1. Examples of derivations constructed by computer

The first example is reproduced directly from the computer printout,
and the following ones given in a more readable form.

Example 1. I- (A-- - — B (Kleene 1952, *60I).

PRIZ-UTOPIST Version 1.0 DATE 22.06.82 TIME 14.19.07
OPTIONS PACK, MACR,NOCMPR,NODBG,LIST,NOSKIP,ALGR
0/0

% EXAMPLE #66 (*60I)

0/0

0/0

:— (A— - B) =

VAR: E,ABL,ALBL,BL,BLL,AL,A,B,Z;
L: CON A,B,Z;
BL: IMP B,L;
BLL: IMP BL,L;
AL: IMP A,L;
ALL: IMP AL,L;
ABL: IMP A,BLL;
ALBL: IMP ALL,BLL;
E: EQ ABL,ALBL;
GOAL E;

A LGORITHM

27

PROPOSITIONAL LOGIC PROGRAMMING

SUBPROBL
—ABL

SUBPROBL
ABL,ALL

SUBPROBL
ABL,ALL,BL

SUBPROBL
ABL,BL,A
ABLIMP1:— BLL
BLLIMP1:-. L

END OF SUBPROBL
ALIMP2:-. AL
ALLIMP1:-. L

END OF SUBPROBL
BLLIMP2: BLL

END OF SUBPROBL
ALBLIMP2:— ALBL

END OF SUBPROBL
SUBPROBL

-.ALBL
SUBPROBL

ALBL,A
SUBPROBL

A,AL
ALIMP1:— L

END OF SUBPROBL
ALLIMP2: ALL
ALBLIMP1:-.BLL

END OF SUBPROBL
ABLIMP2: ABL

END OF SUBPROBL
EEQ3:-.E

END OF ALGORITHM

Each of the following examples begins with the formula to be proved,
then the result of its transformation into the sequent according to rules of
the section 1 is presented, then the computer derivation (up to trivial
permutations) is displayed. If a formula (X —EY for a variable X is intro-
duced in the process of the above-mentioned transformations, then the
reference 'by X' means the inference by a rule applied to one of the con-
junctive members of the conjunction (XE)'. The variable L is always
the one introduced for elimination of the constant L according to 1.3.
Reference 'by L' means inference by a rule applied to implication L E
for a variable E. Names of variables X in formulas (X ++ Er were chosen
to suggest the form of the formula E.

28

MINTS

Example 2. " (" A-. A) (Kleene 1952, *51B)

Li-. (A &Z), AL (A- L), AL2 (AL-. L), (AL 2 A),
DN- LI- L
1. DN- L
2. 1/1 (assumption)
3.]AL2 (assumption)
4. A (from 2)
5. AL 2 A (from 4 by ±)
6. DN (from 5 by DN)
7. L (from 1, 6 by)
8. A- L (from 7 by)
9. AL (from 8 by AL)

10.]AL2 (assumption)
11. L (from 9, 10 by AL2)
12. A (from 11 by L)
13. AL2- A (from 12 by ±)
14. DN (from 13 by DN)
15. L (from 1, 14 by

Example 3. " B F (AVB).-. A (Kleene 1952, *48)

1. L
2. 1D (assumption)
3.]A (assumption)
4. E (by E)
5. E
6. 1B (assumption)
7. L (from 1)
8. E (by L)
9. E

10. E (by D)
11. A (from 2, 10 by E)
12. D- A
13. 1A (assumption)
14. D (from 13 by D)
15. D
16. E (from 12, 15 by E)

Example 4. (A-. B) (A &B) (Kleene 1952, *58B)

(A&B&Z), (B- L), K- (A&B), KL- (K- L),
ABL-. (A- BL), (ABL- KL) I- E
1.]ABL (assumption)
2. 1K (assumption)

29

PROPOSITIONAL LOGIC PROGRAMMING

3. A (by K)
4. B (by K)
5. BL (from 1,3 by ABL)

6. L (from 4, 5 by BL)

7. L
8. KL (from 7 by KL)

9. ABL-'KL
10. 1KL (assumption)
11. 1/1 (assumption)
12.]B (assumption)
13. K (from 11, 12 by K)

14. L (from 10, 13 by K)
15. L
16. BL (by BL)
17. A— BL
18. ABL (by ABL)
19. KL-'ABL
20. E (by E)

6. INDEPENDENT SUBTASKS AND THE MODAL

LOGIC S4

It had been noted already that planning with dependent sub-tasks (that is

the general planning strategy of PRiz) provides sound and complete

proof procedure for the intuitionistic propositional calculus IPC. For

problems with few subtasks (that is, nested implications, see below) its

execution is finished in feasible time. The general decision problem for

the intuitionistic propositional calculus was proved to be P-space-

complete (Ladner 1977), so it would be unreasonable to expect good

computational behaviour of the planner (proof search unit) of PRIZ in

the worst case. The authors of PRIZ, who did not know these general con-

siderations, noticed that the application of the general algorithm leads to

long and useless search during solution of some problems that interested

them. They introduced (from heuristical considerations, see Tyugu and

Harf (1980)) another planning strategy which they called the mode of

independent subtasks. It is determined by the proviso: different subtasks

cannot help each other. More precisely, two computability statements

(A— B) & &

can help each other only via their conclusions D, D', and not via

premises A,A' of their subtasks.
We shall prove that planning with independent subtasks leads to a

sound and correct decision algorithm for the modal logic S4, or more

30

MINTS

precisely for its fragment where only computability statements are con-
sidered, and - is understood as strict implication (see below). Basic
differences from the intuitionistic case is that for S4 these formulas most
probably do not form the reduction class.

It will be convenient to write unconditional computability statements
(2), section 3 in the form K- V (where K is a conjunction of proposi-
tional variables and V is a variable) and conditional computability state-
ments (3), section 3 in the form R1 & & Rn- V, where R1,..., Rn are
unconditional computability statements.
The specification of the program is of the form

On (R1, , Rn) from VI, . , V,n compute V.

It is translated by the propositional formula

(R, & & Rn & & & V„,- V) (1)

The rules of structural synthesis with independent subtasks can be
represented in the following way in terms of sequents so that
formula (1) is translated by a sequent

RI, , R,„ ,

Let us denote by ssRind the system which is determined by the axiom
schema F, V-. V and the following two rules:

& U,) & &
1 K.. p 1 ‘. q

, , I- V

which is denoted by (- -)ind, where Kis any list consisting of variables
occurring in the conjuction K (not necessarily all of them) and

& Vi - V; Y.; I- V./ (1 < j< q)
1 < q

Y1, , YqF V

This system is suitable for deriving sequents

, V„,f-V (2)

from assumptions. The basic difference from the rule (- -) of the
system PRIZ is in the second premise of the rule (- -)ind: now it does
not contain antecedent formulas of the conclusion, and it was through
them that other subtasks could help.
Consider translation of formulas and sequents in the language of

modal logic which sends implications (A-. B) into strict implications
D(A D B). The translation of the expression E will be denoted by E'.

31

PROPOSITIONAL LOGIC PROGRAMMING

Our main aim in this section is the proof of the following statement:

Theorem 1. The sequent

R;, , , V,,,F V (3)

is derivable in S4 if and only if the sequent (2) is derivable from assump-
tions RI, , R, in ssRind.

Proof: recall that the rules of the Gentzen-type sequent version of S4
have the form

A,DA,X —Y

DA,X
(OF)

XFY,A; B,XFY
 (CF)
(AD XFY

A,B,XFY

(A&B), XFY
(&F)

DX -A

Y,EIX

A,XF Y,B

X (AD B),Y
(ED)

F

XFY,A; XFY,B
 (F&)
XF Y, (A&B)

Let us prove first the correctness of our translation. Let a derivation d
of the sequent (2) from assumptions RI, , R, in the system ssRind be
given. Add formulas RI, , R, to the left of F sign in all sequents occur-
ring in d, and replace all formulas of the form (A — B) by 0(AD B).
Then the axioms X, VF- V become axioms Y,X, VF V, assumptions R.
become axioms R,. . . , F R;, and any inference according to the rules
(-)ind, (becomes a sequence of inferences according to the
rules of S4. So the sequent (3) is derivable in S4, exactly as required.
To prove that our translation is faithful, we shall apply a specialization

of derivations in S4 familiar from proof theory.

Lemma: Every derivation of the sequent (3) in S4 can be transformed
into a one-succedent derivation of the same sequent (any sequent in the
derivation contains no more than one formula to the right of F) and any
(0 F)-inference is contained in a figure of one of the following forms:

... 0/, YF

WYE & Vj; V,0/,YFW (4)

/,0/, YF W

0(& ViD V),YFW
1.4j‹q

where K, Ware variables and / denotes (& 17i D V)
1 j q

or

32

Y-,1Z, ui

U,)

... 0/, Yl- D(Ki D Ui) .; 17/

0/, Y & 0(KiD Ui) & & Vi; 0/, V, YFW

(& D(KiD Ui) & & ViD V), YF W
1<i<p 1<j<q

MINTS

(5.1)

(5)

(5.2)

where /denotes (& D(KiD Lid & & VID V), the U,(1 < i< p),1/11
1 4 i< p l< j< q

(1< j< q), V,W are variables, IC, (1 < i< p). are conjunctions of
variables, Y - denotes the result of deleting from the list Y all its
elements which do not belong with 0, and k is the list obtained from a
conjunctioreK by replacing all & by commas; any (1-0)-inferences are
contained in figures of the form (5).
The proof of the leitma: consider an arbitrary cutfree derivation of the

sequent (3) in the system S4. In view of the subformula property the
main formula of any (0 0-inference is of the form 0/as in (4) or (5), and
the main formulas of (1-0)-inferences are of the form 0(KiD L/i) and
originate from formulas 0/situated to the left of F. Using invertibility of
all rules for the propositional connectives &, , we can ensure that all
(0 0-inferences introducing formulas containing a unique occurrence of
0 (i.e., translations of the unconditional computability statements) are
contained in figures which differ from (4) at most in one respect: Wcan
be a list of variables and of formulas of the form 0(K D U), and W is
added to the left of I- in two upper sequents. (0 0-inferences introducing
translations of the conditional computability statements can be assumed
to be inside figures which differ from (5) in a similar, inessential way.
Similarly, (F 0)- and ()-inferences are contained in figures of the
form

X-, F U;

Kil-Ui (6)

}- KiD

XI-EI(K,D U,), Z

which are similar to the figure (5.1), where Z consists of variables and
0-formulas.

Let us now delete, beginning from the top, all superfluous formulas.

33

PROPOSITIONAL LOGIC PROGRAMMING

This is first done for axioms, and then for other sequents. All inferences
and whole branches of the derivation tree which become superfluous in
the process are deleted too. Let us etablish that exactly one formula will
remain to the right of I- in every sequent. This property is obvious for
axioms and is preserved by all inferences except F D. But in our case it is
satisfied even for (D), since it is contained in (6). To finish the proof it
remains only to verify that the parts (5.1) and (5.2) of the figure (5)
cannot be situated too far away and that the formula Win (4), (5) cannot
be of the form 0(K U). Suppose for contradiction that some figure
(5.1) is not immediately above a corresponding figure (5.2). Choose the
lowermost such figure (1). Immediately above it some figure of the form
(4), (5) or (5.1) should be situated, and (13. is situated immediately above
the right premise of the rule (F). Assume, to simplify the notation, that it
is (4) that is situated under O. Then the relevant part of the derivation is
of the form.

DU— FKD
 (13

& V,0/, YF 0(KD U)

404 Yl- 0(K D U)

WYE 0(KD U)

where I is (&J'D V). Now the formula V to the left of F in the sequent

V,0/, Yl- 12(K U) turns out to be superfluous, but then the whole figure
(4) is superfluous, which contradicts our assumption that all superfluous
parts are already deleted. Remaining cases are treated similarly, and this
finishes the proof of the lemma.

To finish the proof of the theorem, take the derivation of sequent (3)
satisfying the lemma and apply induction on its length to construct a
derivation of sequent (2) from assumptions R1,. . . , Rn. The induction
base is obvious: the derivation consists of the only axiom. The induction
step consists of two cases: the derivation ends in figure (4) or (5).
Consider the second case, since the first case is obtained from it by delet-
ing everything depending on subformulas 0(K, U,). The inductive
hypothesis gives the derivations of the sequents IC, F LI; (1 < p), Ya F Vj
(1 ‘. q) from assumptions R1,. . . , R. Here Ya is the result of deleting
all non-atomic elements of the list Y Formula Olin the figure (5) con-
sidered now is of the form R (1 i4 p). Now the derivation of the
sequent YaF W is obtained by a single application of the rule (-b--)
which finishes the proof of the theorem.

Note. Construction from our proof is very similar to the standard
transformation of the Gentzen -type L-derivation into natural deduction.

34

MINTS

In our case there was no necessity to use the complicated restriction on
the natural deduction in S4 imposed by Prawitz (1965) or to introduce
the apparatus of the square brackets from Mints (1974), since implica-
tions of the form A DOB are not allowed in our language. It is to avoid
such formulas that we expressed specifications in the form (1) instead of
intutionistically (but not S4 —) equivalent multiple implication.

APPENDIX 1

The inference rules for structural synthesis of programs (ssR)

I-X — V; F FX
 , N-)

F

where F FX is a set of sequents for all X in X.

(U— V)-(X- Y); FI-X; Z, UF V
 N--)

FZI-Y

where ri-x is a set of sequents for all X in X, and Z, UI-Visa set of
sequents for all (UI- V), in (Ul- V).

F, XI- Y
(~ +)

Y

In fact, the planner of PRIZ uses some additional rules which can be
derived from the basic ones listed above. For example in the rule (-)
the rightmost Uabove the line can be replaced by W& U, and TV added
below the line.

APPENDIX 2

We present here program derivation rules. Taking into account

X— Y= (Vs) (X(s)— Y(f(s))

and

(U-V)-(X--- Y)=
(Vgjg((Vu) (U(u.)-4. V (g(u))) — (V x) (X (x)— (Y (F (g,x))),

we can extend the inference rules SSR so that they will contain the rules
for building new terms:

I-X7 V; FI-X(t)

Fl- V(f(t))

35

PROPOSITIONAL LOGIC PROGRAMMING

F (U-; V)-4 (X-FT-g.)Y); FFX(s); Z,U1- V(t)

r,zF Y(F(),u.t) (s))
r,XFY(t)

r AT; Y

These rules represent the method for constructing a program simul-
taneously with the proof.

APPENDIX 3

Computer printout of the algorithm for the problem mech.

AB.1= 0.7 -4 AB.1
AB.P1.x = 0 AB.P1.x
AB.Pl.y = 0 -.AB.Pl.y
BC.1= 1.5 —BC.1
BC.P2.y = — (0.5) -4 BC.P2.y
u

AB.angle = u AB.angle
sin(AB.angle)*AB.1= AB.P2.y — AB.Pl.y AB.P2.y
BC.Pl.y = AB.P2.y BC.Pl.y
AB.1*AB.1 = (AB.P2.x — AB.P1.x)^2 + (AB.P2.y — AB.P1.y)^2

AB.P2.x
BC.P1.x = AB.P2.x BC.P1.x
BCPBC.1= (BC.P2.x — BC.P1.x)^2 + (BC.P2.y — BC.P1.y)^2

BC.P2.x
BC.P2.x = v v
end of algorithm

REFERENCES AND BIBLIOGRAPHY

Clocksin, W. and Mellish, C. (1981). Programming in Prolog. Springer-Verlag, Berlin.
Curry, H. B. (1963). Foundations of Mathematical Logic. McGraw-Hill.
Gabbay, D. M. (1986). Negation as inconsistency. I. J. Log. Progr.,1, 1-35.
Gabbay, D. M. and Reyle, U. (1984-85). N-Prolog, and extension of Prolog with
hypothetical reasoning. Part I. J. Log. Progr. (1984) 1, 319-55; Part II. Ibid. (1985), 2,
251-84.

Harf, M., Mints, G., Penyam, J., and Tyugu, E. (1983). Structural synthesis of recursive
programs. In: Automatic synthesis of programs. Inst. of Cybern., Estonian Academy of
Science. Tallinn, pp. 58-70 (Russian).

Kahro, M., Kalja, A., and Tyugu, E. (1981). Instrumental programming system ES EVM
(PRIZ) (Russian). Moscow, Finansy i Statistika.

Kanovich, M. I. (1985). Lossless calculi in the effective schematic synthesis of programs
(Russian). Soviet Conference in Applied Logic. Novosibirsk pp. 98-100.

Kleene, S. (1952). Introduction to metamathematics. North-Holland, Amsterdam.

36

MINTS

Kowalski, R. (1979). Logic for problem solving. North-Holland, Amsterdam.
Ladner, R. (1977). The computational complexity of provability in systems of modal
propositional logic. SIAM J. Comput. 6, No. 3, 467-80.

Matskin, M., Mints, G., Tyugu, E., and Volozh, B. (1982). Theorem proving with the aid
of program synthesizer. Cybernetics, No. 6, 63-70.

Mints, G. (1974). Lewis' systems and the system T. (Russian). In: Feys R., Modal Logic.
Moscow, Nauka, pp. 422-509.

Mints, G. (1984). Structural synthesis with independent subtasks and the modal logic
S4. Proc. Estonian Academy of Sci., Ser. Mathem., 33, No. 2, 147-51 (Russian).

Mints, G. (1986). Complete calculus for the pure Prolog. (Russian) Proc. Estonian
Academy of ScL, (1987), 35, no. 4.

Mints G. and Tyugu, E. (1982). Justification of the structural synthesis of programs. ScL
of Computer Progr., no. 2, 215-40.

Mints, G. and Tyugu, E. (1987). The programming system PRIZ. Journal of Symbolic
Computations, No. 4.

Penyam, J. (1983). The synthesis of a semantic processor from attribute grammar. Soviet
Computer Programming, No. 2. 50-62 (Russian).

Prawitz, D. (1965). Natural deduction. Almquist and Wiksell, Stockholm.
Schiitte, K. (1977). Beweistheorie. Springer-Verlag, Berlin.
Tyugu, E. (1986). The future of logic programming. Information Processing 86 (ed. H. J.
Kugler). North-Holland, pp. 225-7.

Tyugu, E. and Harf, M. (1980). Algorithms of the structural synthesis of programs.
(Russian). Computer Programming, no. 4, 3-13.

Vorobyev, N. N. (1958). A new derivability algorithm in the constructive propositional
calculus. Proc. Steklov Math. Inst., 52, 193-226. (Russian, English translation by
AMS).

Wajsberg, M. (1938). Untersuchungen liber den Aussagenkalkiil von A. Heyting,
Wiadomosci Matematyczne, 46, 45-101.

37

3

Computational Models in PROLOG

A. A. Lamp
Institute of Cybernetics,
Tallinn, USSR

1. INTRODUCTION

The programming language PROLOG enables us to write declarative
programs where the order of predicates is irrelevant to the correctness
and functioning of the program.
On the other hand, undoubtedly, some computational programs con-

taining an evaluable predicate are not declarative as the evaluable
predicates have restrictions in calling them (for example, the predicate
'Xis Y*Z' can be called only when the variables Y' and 'Z' are bound).

Nevertheless, it is possible to write declarative computational pro-
grams using special programming disciplines. One of them was deve-
loped at the Institute of Cybernetics by Enn Tyugu and implemented in
the programming system PRIZ—it is a formalism of computational
models [1, 2]. In this paper we will study examples of the computational
model approach, and discuss the discipline for solving computational
problems stated in terms of computational models in PROLOG.

2. WHAT IS A COMPUTATIONAL MODEL?

A computational model represents the meaning of a problem in terms of
computability. It is a production system where the situation is deter-
mined by a set of variables with computable values and the actions are
determined by a set of computational rules with calculating programs.
These computational rules define when calculating programs are appli-
cable.
For example, the meaning of a geometrical object 'square' can be

represented by three variables and two rules:

K = length of side,
D = length of diagonal,
S = area of square,
if nonvar(K)&var(D) or nonvar(D)&var(K)
then equ(D = K*sqrt(2)),

if nonvar(K)&var(S) or nonvar(S)&var(K)
then equ (S = K" 2),

39

Figure 1.

COMPUTATIONAL MODELS IN PROLOG

--where

nonvar—tests whether,variable is currently bound,
var —tests whether variable is currently unbound,
equ —solves equation.

The calculating programs called from the computational model have
input variables (to be computed before execution) and output variables
(to be computed after execution).

In the first rule, the call ̀ equ(S = K'..2)' has the input variable K and the
output variable S or the input variable Sand the output variable K.
The computational rules have the special form: 'if the input variables

have been computed and the output variables have not been computed
then the calculating program is executed'.
In the example, the formula ̀nonvar(K)&var(S) or nonvar(S)&var(K)'

tests whether the input variable K is bound and the output variable S is
unbound or the input variable S is bound and the output variable K is
unbound; the call ̀ equ(S = IC2)' applies a program ̀ equ' solving the
equation 'S = 1(2'.
The computational model can be used for calculating the values of the

variables. The algorithm for calculating is actually a forward reasoning
algorithm which scans the production rules until new values are
computed.
The computational model 'square' can be used for calculating

variables K, D, and S. For example, if the value of S is obtained then the
value of D would be computed by scanning the computational rules
twice (the first time K is computed using rule 2 and the second time D is
computed using rule 1).

3. HOW IS A COMPUTATIONAL MODEL WRITTEN?

A computational model can be encoded as a program memorizing all
values and scanning all computational rules.
The computational model 'square' can be written as one clause that

memorizes all variables (encoded as arguments) and scans all rules
(encoded as successful procedures ').

square(K,D,S):—
• weak([K,D]) equ(D = K*sqrt(2)),

weak ([K,S]) equ(S = KA 2).

where

weak([X, c'/0 predicate ̀ weak([X, Yl)' tests
nonvar(X),var(Y); '% the condition ̀ nonvar(X)&var(Y) :
nonvar(Y),var(X).

40

LUMP

call(C), % procedure 'C—A' encodes
call(A); c1/0 the rule 'if C then A'
true.

The program 'square' can be simplified using a special procedure 'rel'
that generates a list of variables (has_variable(S = K^2,[K,S])), tests the
condition (weak([K,S])) and applies the program-solving equations
(equ(S = 1(2)).

square(K,D,S):—
rel(D = K*sqrt(2)),
rel(S = 1(2).

where

rel(Equation):—
has_variables(Equation,List),
weak(List) equ(Equation).

A computational model can be encoded hierarchically. Using the
already encoded computational models we can define new compu-
tational models. In the next example an object 'figure' contains the object
'square'. And the definition of the model 'figure' contains the definition
of the model 'square'.

figure(K1,D1,S1,D1,D2,S2,S):—
square(K1,D1,S1),
square(D1,D2,S2),
rel(S = S2 —S1/2).

square(K,D,S):—
rel(D = K*sqi-t(2)),
rel(S = K^2).

K1

Figure 2.

To abstract from the unnecessary arguments in the clause 'figure' we
include a variable Q in the clause 'square'. After that a new procedure
'figure' has three arguments: Qi, Q2 and S. Nevertheless the new
procedure memorizes all variables of the computational model, as Q1
includes Ki, D1, Si (Q1= [K1,D1,S1]) and Q2 includes K2, D2, S2
(Q2 = [K2,D2,S2]).

figure(Q 1,Q2,S):—
square(Q 1,D 1,S1),
square(Q2,D1,_,S2),
rel(S = S2 —S1/2).

square(Q,K,D,S):—
Q = [K,D,S],
rel(D = K*sqrt(2)),
rel(S = 1(2).

41

Figure 3.

COMPUTATIONAL MODELS IN PROLOG

In the formalism of computational models it is assumed that the order
of rules is irrelevant (it does not matter for the functioning of the
program). Consequently any computational model is definable by a
declarative program where, in any clause, the order of predicates is
immaterial. In other words, a programmer can change the order of
computational rules (for example, he can change the order of
'rel(D = K*sqrt(2)) and 'rel(S = 1(2)%

4. HOW TO USE A COMPUTATIONAL MODEL

A computational model is used to compute all variables or to compute a
particular variable or variables.

To compute all variables the computational model is called several
times (one call executes all computational rules).
In the following example the value of S is one. The first call computes

K; the second, D; the last, nothing.

?-square(_,K,D,1),square(_,K,D,1),square(_,K,D,1).
K=1,
D = 1.4142
yes

The computational model must be called until something is computed.
This can be done by a special procedure 'corn' that calls the compu-
tational model until no rule is fired (new values are not computed by any
'rel').

?-com(square(,K,D,1)).
K=1
D = 1.4142
yes

To compute particular variables all values are computed and par-
ticular values are tested. In the next query the variable D is computed
and tested.

?-com(square(„D,1)),nonvar(D).
D = 1.4142
yes

If we have a special procedure 'pro' that computes all variables from
input variables and tests values of output variables, then the variable D
can be computed by a query.

?-S=1,pro(square(_,K,D,S),WMS1).
D = 1.4142
yes

42

LOMP

where

[D] is a list of output variables (to be computed after call),
[S] is a list of input variables (to be computed before call).

The procedure 'pro' can be called from any calculating program. For
example, it can be called from a program ̀ sum_up' that has an input
variable A and an output variable Z.

sum_up(0 ,Z):— % The computational
pro(sum(_,_,Z,0),[Z],[0]). `)/0 program ̀sum_up'

sum_up(A ,Z):—
pro(sum(,_,Y,A),[Z],[AD,
Al is A- 1,
sum_up(A1,Z1),
ZisZ+Z1.

The program ̀ sum_up' and the program 'is' are called from the compu-
tational model 'sum'.

sum(A ,Z, Y,X):— % The computational
(nonvar(X),var(Y) Y is X' 2), % model 'sum'
(nonvar(A),var(Z) sum_up(A ,Z)).

The procedure ̀ sum_up' tests the predicate 'pro'. To test this predicate
before calling the procedure we would rewrite the computational model
'sum'.

sum(A ,Z, Y,X):—
(nonvar(X),var(Y) Y is X' 2),
(nonvar(A),var(Z),pro(sum(_,_, Y,X),[Y],[X]) -.sum_up(A ,Z)).

That is to say, we have extended the computational rules with the
predicate 'pro'. This is true when its output variables are computable
from its input variables using a computational model. Otherwise this
predicate is false.

5. IMPLEMENTATION

To write declarative computational programs we have extended the
programming system PROLOG with new system-defined procedures
(rel,com,pro, ...).
These procedures are executed by the PROLOG interpreter. But they

can also be executed by a special meta-interpreter that synthesizes the
text of a program.

?-pro(square(K,D,S),(S],[D1).

43

COMPUTATIONAL MODELS IN PROLOG

square(K,D,S):— "Yo The text of the program
equ(D = K*sqrt(2)), , °A) synthesized by the
equ(S = K's 2). metainterpreter

yes

The meta-interpreter and added procedures have been implemented
in micro-PRoLoG [3] and in CPRoLoG [4] (the system micro-PRoLoG runs
under MSDOS on the ism PC and the system CPRoLoG runs under UNIX on
SUN).

6. APPLICATIONS

The present system and the system PRIZ are based on the same
formalism—the computational model. So from the theoretical point of
view they can be used for solving the same problems.
The system PRIZ has been used for simulating power semiconductor

thyristors, for designing shafts, for computing active filters, for analysis
of gear transmissions, and so on. The present system can solve all these
problems, but its current use is for computing geometrical objects,
parameters of electrical circuits, characteristics of hydraulic drives, and
for simulating logic cells.
Furthermore, in presenting this formalism we defined the compu-

tational model 'square' that has two rules. The systems above have been
efficiently used to solve problems where the model contains more than
10,000 rules.

7. CONCLUSION

In this paper we claim that computational programs can be written as
specifications if we carefully follow the discripline of programming
computational models in PROLOG.
Unlike many disciplines for writing specifications, this gives relatively

effective computational programs that can be used in practice.

Acknowledgements

I am grateful to the Institute of Technical Cybernetics in Czechoslovakia and to the
Turing Institute in Scotland for technical support when completing this research. I greatly
benefited from comments, suggestions, and discussions from Enn Tyugu, Grigory Mints,
Leo Motus and Peeter Lorents. I would also like to thank Donald Michie for his en-
couragement and Guy Narbony who implemented the equation-solver.

APPENDIX—COMPUTING PARAMETERS OF
ELECTRICAL CIRCUITS

Here follows a package for analysis of alternating-current electrical cir-
cuits made of capacitors and inductors. The class of circuits is restricted

44

LOMP

to parallel-series connection of ports characterized by current, voltage,
resistance, and conductance. All these parameters are complex num-
bers, represented by real parts, imaginary parts, modules, and argu-
ments.
The concepts needed for this problem domain are:
compl—complex number,
plus —addition of complex numbers,
multi —multiplication of complex numbers,
port —branch of circuit,
cap —capacitor
ind —inductor,
ser —series connection of ports,
par —parallel connection of ports.

The variables needed for this problem domain are:

P —port,
C —complex number,
RE —real part of complex number,
IM —imaginary part of complex number,
MOD—module of complex number,
ARG —argument of complex number,
W —frequency (real number),
C —capacity (real number),
L —inductivity (real number),

—current (complex number),
U —voltage (complex number),
Z —impedance (complex number),
G —conductance (complex number).

0/0
% Concepts

compl(C,RE,IM,MOD,ARG):—
C =[RE,IM,MOD,ARG],
(ingRE,IMD,out([MOD,ARG])— cmpll(RE,IM,MOD,ARG)),
(outURE,IMD,inaMOD,ARGD-. cmpl2(RE,IM,MOD,ARG)).

plus(Cl, C2, C):—
compl(C1,RE1,./M1,_,_),
cornpl(C2,RE2,IM2,_,_),
compl(C, RE, IM, ,_),
rel(RE = RE1+ RE2),
rel(/M=/M1 +1M2).

multi(C1,C2,C):—
compl(C1,„„MODLARG1),

45

COMPUTATIONAL MODELS IN PROLOG

compl(C2,,MOD2,ARG2),
compl(C, _,_,MOD, ARG),
rel(ARG = ARG1 + ART2),
rel(MOD = MOD1* MOD 2)

port(P,/,U,Z,G):—
P= [I,U,Z,G],
compl(L_,_,_,_),
compl(
compl(Z,_,_,_),
compl(G,_,_,_,),
multi(I,Z,U), % U = I*Z
multi(Z,G,[1,0,1,0]).)̀/0 1 = Z*G

cap(P,C, W):—
port (P,_,_,[RE,IM,_,_],_),
rel(/M= (— 1)/(W*C)),
rel(RE = /M/1000000).

ind(P,L,

rel(/M= W*L),
rel(RE = /M/1000000).

ser(P1,P2,P):—
port(P1,/,U1,Z1,_),
port(P2,/, U2,Z2,_),
port(P,/, U,Z,_), % I = I1= /2
plus(Ul, U2, U), % U= Ul + U2
plus(Z1,Z2,Z). Z= Z1 + Z2

par(P1,P2,P):—
port(P1,/1,U,_,G1),
port(P2,/2,U,_,G2),
port(P,/,U,_,G) % U= Ul = U2
plus(11,12,1), % I= Il + /2

plus(G1,G2,G). % G = G1 + G2

ok

')/0 Procedures
0/0

cmpll(RE,IM,MOD,ARG):—
MOD is sqrt(RE *RE + IA! *IM)

ARG is atan(IM/RE).
cmpl2(RE,IM,MOD,ARG):—
RE is MOD*cos(ARG),
IA! is MOD*sin(ARG).

print_port(Port,[1,U,Z,G]):—
nl,n1,

46

print(Port),n1,
print('/ = '),print(/),n1,
print(' U =1,print(U),n1,
print('Z = '),print(Z),n1,
print('G= '),print(G),n1.

0/0

°A) Example
ok

let(W,C1,L2,C3,L4,P1,P2,P3,P4,P5,P6,P):—
cap(P1,C1, W),
ind(P2,L2, W),
cap(P3,C3,W), %

.1ind(P4,L4, W) % I I
ser(P1,P2,P5),
par(P5,P3,P6),
par(P6,P4,P).

%
%
%

P1
I
P2

I
P3
I

I
P4
I

act:—
W is 6.28*50,

%
cro

I I I

Cl = 5.0e — 9,
L2 = 3.0e — 3,
C3 = 4.0e —9,
L4 = 5.0e — 3,

LO MP

U=[220,0,_,_],
P3 =
com(let(W,C1,L2,C3,L4,P1,P2,P3,P4,P5,P6,P)),
print_port('P',P).

-
I?-act.
P
[[0.000177625,— 140.128,140.128,— 1.5708],
[220,0,220,0],
[1.99011e — 06,1.56999,1.56999,1.5708],
[8.07386e — 07, — 0.636945,0.636945, — 1.5708]]
yes

REFERENCES

1. Tyugu, E. (1987). Knowledge based programming. Addison-Wesley, New York.
2. Mints, G. and Tyugu, E. (1987). The programming system PRIZ. Journal of Symbolic

Computations No. 4.
3. McCabe, F. and Clark, K. (1983). Micro-PROLOG 3.0 Programmer's Reference

ManuaL Logic Programming Associates Ltd., p. 135.
4. Clocksin, W. and Mellish, C. (1981). Programming in Prolog p.279, Springer-Verlag,

Berlin.

47

4

On the Construction of Unifying Terms

Modulo a Set of Substitutions

S. Langet
Humboldt University,
Berlin, GDR

Abstract

The aim of this paper is to provide a mathematical problem which is of
interest for getting practicable methods in the field of inductive program
synthesis. The problem we have in mind is obviously a dualism to the
unification problem in some equational theory. We consider two terms
t, t2 and two possibly different substitutions 61, b2 for each of them.
The problem is to find a unique term t for both terms such that t and t1 as
well as t and t2 are unifiable with respect to the underlying equational
theory by using b1 or b2 as a unifier. The problem is trivially decidable in
free-term algebra. It is undecidable in the general case. Moreover, even if
the underlying equational theory is decidable, then the problem we have
in mind may be undecidable, too. Finally, we derive sufficient pre-
conditions for proving its decidability.

1. INTRODUCTION

Our investigations are closely related to research work in Artificial
Intelligence which has been dedicated to inductive program synthesis.
The work done in this field has dealt with the problem of automatically
synthesizing real software systems from possibly incomplete user-
specifications. The incompleteness of some intermediate problem
description seems to be a fairly usual occurrence in real programming
processes. This reflects, from a theoretical point of view, the gist of
inductive inference approaches as described in the survey paper [1], for
example.
We will assume that the reader is familiar with the basic ideas of

algebraic semantics. For the initial concepts of algebraic semantics he
should consult the book by Ehrig and Mahr [3].

The main idea of algebraic semantics is to offer facilities for a
stepwise development of software systems on a highly abstract level.
Much research has been aimed at producing automatic systems for

tPresent address: Leipzig Institute, Department of Mathematics and Informatics,
PO Box 66, Leipzig 7030, GDR

49

CONSTRUCTION OF UNIFYING TERMS

synthesizing software systems from algebraic specifications (see [3]).
For improving the power of algebraic specification systems, the user
should be able to present step-by-step intermediate specifications de-
scribing a target software system incompletely. Moreover, the system
should be able to learn (or synthesize) automatically a correct specifica-
tion for the target system (with respect to the underlying semantic con-
cept) in processing incomplete information. For that reason, it has to put
together inductive inference algorithms, learning correct specifications
from incomplete descriptions presented step by step.
The decidability problem discussed in this paper is of importance if

feasible inductive inference algorithms are to be designed for performing
this task.

2. BASIC DEFINITIONS AND NOTATIONS

Within the scope of this paper we think of software systems as total
algebras of a certain signature. Assume sic =(S,O,a) to be a finite
signature, that is, a finite set S of sort names, a finite set 0 of names of
operators on these sorts, and a mapping a from 0 to S+ for fixing the
arity of each operator in 0. For a collection X containing certain
variables for each sort in SIG, T(sic,X) denotes the set of all well-formed
terms over SIG and X. T(sm) is the subset of all variable-free terms
included in T(sic,X). As usual, finite sets of conditional equations built
over sic and X are considered as specification tools. Assume E to be a
finite set of conditional equations. ALG(SIG,E) is defined as the class of all
minimal sic-algebras A, i.e. sic-algebras finitely generated from their
constituents named in SIG such that all conditional equations of E are
valid in A. Let us think of AL,c(sic,E) as a category with sic-homo-
morphisms from algebras onto algebras as morphisms. T(sic) is the full
term algebra. T(sic) I E is the term algebra factorized by the congruence
relation induced by E, that is, the initial algebra (up to isomorphism) in
the category under consideration.
Our investigations are based on initial algebra semantics. Thus, an

algebraic specification, i.e. a pair (sic,E), describes the algebra T(sic) I E
(up to isomorphism). It is well known that the initial algebra T(sic) I E in
ALc (sic,E) is characterized by the fact that in T(sic) I E exactly all term
equations are valid which can be proved from E.
In our inductive inference approach objects which should be identi-

fied from incomplete descriptions are algebras of a certain signature
sic*. Finite sets E; of conditional equations over SIG* and some fixed
collection X* of variables can be presented as incomplete information
about some sic*-algebra A*. An infinite sequence E', ... forms a
specification of A* in the limit (under initial semantics) if and only if the

50

LANGE

algebra A* is initial in the category ALG(SIG*, U E'n). The task is to
provide algorithms that are able to synthesize large classes of algebras
from their specifications in the limit.

Within the scope of this mathematical approach we have studied the
following case in detail. Objects to be synthesized are algebras of a
certain signature SIG* which can be finitely specified over a given ground
specification (sto,E) (with respect to initial semantics). We consider
algebras containing an additional function on the sorts of the algebra
specified by (sIG,E). We will assume that the ground specification
(sto,E) is given. Consequently, it will be sufficient to discuss the case that
a specification in the limit for an algebra of that kind contains term
equations for characterizing the input/output behaviour of the addi-
tional function.
In [5] and [6] the author has provided a quite general synthesis

methodology for the design of inference algorithms for this case.
Algorithms constructed on the basis of this methodology are able to
synthesize large classes of algebras which can be finitely specified over
different kinds of ground specifications. For the design of practicable
algorithms, it seems to be essential that the basic knowledge formalized
in a given ground specification (siG,E) can be considered as a canonical
term rewriting system. Using a set E of conditional equations as a term
rewriting system, R(E) means 'to read the conclusion of each con-
ditional equation from the left to the right and to use it like a rewrite rule'.
(Premises have first to be proved by applying the rules of R(E) itself.) If
the corresponding term rewriting system R(E) is canonical, then it
defines a decidability procedure about the equational theory induced by
E on the set of terms T(siG) (see [4]). In the sequel, we denote by
Tnf(siG) the set of all iTariable-free terms in T(siG) which are irreducible.
A term t is contained in Tr,f(siG) if and only if there is no rule in R(E)
which is applicable to t. For a term t in T(siG) we denote by nf(t) its
corresponding and definite normal form in Tnf(siG), that is, t can be
reduced to nf(t), and nf(t) is irreducible.
The class of ground specifications we have in mind can be defined as

follows.

Definition 1
Let us assume that (siG,E) is an algebraic specification. Moreover,
assume Z =(0c,0s,07-) to be a classification of the set of operators
0 of sic into three disjoint sets such that 0 = OcU OsU OT. The
triple (siG,Z,E) is said to be a classified specification

iff
(1) The corresponding term rewriting system R(E) is canonical;
(2) Vop€ Osla (op) = sls]
(3) Vt€ T(sic)3r€ T(stoc):[El = t =

51

CONSTRUCTION OF UNIFYING TERMS

(4) VtE T(sioc)31cEN3t1,
VSE T(SIGs,{X}):
[El= s[x..- t] = t, OR.

(5) Vop E O7-:[a(op) = s1..

. tk E T(sioc)

.. OR El = s[x.-t] = tk]
. sk boolean]

Note that =' denotes the usual consequence operator. T(sioc) and
T(sios,{x}) are the subsets of T(sio) and T(sio,X), respectively, which
are formed by restricting the set of operators to Oc and Os, respectively.
Note that the concepts selector (i.e. the operators in Os) and con-

structor (i.e. the operators in Oc) are similar to those defined in [7]
which are motivated by the aim to characterize the storage and access
behaviour of algebraically specified abstract data types.

3. THE MAIN RESULTS

Assume (sio,Z,E) to be any classified specification. Moreover, let us
assume that sio* is a signature that differs from sio in such a way that a
new operator 'op' is added to sic, where the arity of this operator is fixed
by a*(op) = sl s. A* denotes a sio*-algebra which can be finitely specified
over the given ground specification (sio,E). Additionally, A* should be
characterized by the fact that a target function fop is isomorphically
represented by the interpretation of op in A* (with respect to initial
semantics).
In a real program synthesis process based on the general synthesis

methodology provided in [5] and [6], the following problem arises:
Assume op(x1) =yi and op(x2) =Y2 to be term equations for represent-
ing the input/output behaviour of the function fop in A*. Thus, xl, x2 and
yi, y2 are variable-free terms in T(sio) of sort si and s, respectively. In
the first step the outputs have to be expressed in terms of the cor-
responding inputs by means of certain terms in T(sio,{x}). That is to say,.
terms t1 and t2 included in T(sioc, T(sios,{x})) are produced which may
be understood as straightforward computations for yi from x1 and y2
from x2, respectively. For determining the next steps of the synthesis
process, it is essential to know whether or not ti and t2 are instantiations
of the same straightforward computation. More formally, one has to
decide whether or not there exists a term t E T(sioc, T(sios,{x})) such
that:

El= t[x 1] = y, and El= t[x x2] = y2.

In general, this equation yields the following decidability problem.

Definition 2
Assume (sio,Z,E) to be any classified specification. The problem of
the construction of unifying terms is decidable for (sio,Z,E)

iff

52

LANGE

For all terms t1,t2E T(siGc,T(sics,{x})) and for all substitutions
bl, b2 it is decidable whether or not there exists a term
t E T(siGc, T(sics,{x})), such that:
[El = bi(t)= b MI) and El = b2(t)=

By reduction to one of the problems well-known to be undecidable,
Theorem 1 can be proved. A detailed proof using Hilbert's tenth
problem can be found in [6].

Theorem 1
There exists a classified specification (sIG,Z,E) such that the
problem of the construction of unifying terms is undecidable for
(sIG,Z,E).

For the control of the synthesis process it is of importance to solve the
decidability problem defined above. For that reason, we consider the
following class of ground specifications.

Definition 3
Assume (sto,Z,E) to be any classified specification. (sIG,Z,E) is said
to be a classified specification with a compatible size-measure #

iff
(1) There is a computable function #: Tnf(siG) N, such that:

(1.1) Vt E Tnf(SIG): [# (t) is defined.]
(1.2) Vn EN: [# -1(n) is finite.]

(2) Vop€ Oc(a (op) = s1 sks)Vti, , tkE Trif(SIG):
[3i(isk): El= t, = op(tI, , tk) or
V i(i k): # (Os # (nf(op(ti, , tk)))]

(3) Vop€ OsVt E T„f(sto): [# (t) # (nf(op(t)))]

Obviously, the function # defines a size-measure in the sense of Blum
[2] over the set of all irreducible terms in T(stc).

Theorem 2
Let (sIG,Z,E) be any classified specification with a compatible size-
measure #. Then it holds that the problem of the construction of
unifying terms is decidable for (sIG,Z,E).

A detailed proof of Theorem 2 can be found in [6].
Since the complexity of the decidability problem under consideration

determines the complexity of the whole synthesis process, the following
result is essential.

Theorem 3
There is a classified specification (sIG,Z,E) with a compatible size-
measure #, such that the problem of the construction of unifying
terms is NP-complete for (sIG,Z,E).

53

CONSTRUCTION OF UNIFYING TERMS

REFERENCES

I. Angluin, D. and Smith, C. H. (1983). Inductive inference: theory and methods,

Computing Surveys, 15, No. 3, 237-59.
2. Blum, M. (1967). On the size of machines, Information and Control, 11, No. 3.
3. Ehrig, H. and Mahr, B. (1985). Fundamentals of Algebraic Specifications—Part I,

EATCS—Monographs on TCS, 6, Springer-Verlag.
4. Huet, G. and Oppen, D. C. (1980). Equations and rewrite rules: A survey, in: R. V

Book, Formal Languages: Perspectives and Open Problems, Academic Press, New
York.

5. Lange, S. (1986). A program synthesis algorithm exemplified, in: Proceedings of
MMSSSS '85, LNCS 215, Springer-Verlag.

6. Lange, S. (1987). A decidability problem of Church-Rosser specifications for
program synthesis, in: Proceedings of All '86, LNCS 265, Springer-Verlag.

7. Thomas, M. (1985). The storage and access structure of algebraic specified data
types, in: Abstracts of the 4th Workshop on Specification of Abstract Data Types,
Informatik-Berichte der TU Braunschweig, No. 86-09.

54

5

Plausible Inference and Negation in Horn

Clause Logic

T. B. Niblett
The Turing Institute and University of Strathclyde,
Glasgow, UK

Abstract

We elucidate the role of probabilistic techniques in plausible reasoning
and provide reasons why the probabilistic calculus is not adequate by
itself for plausible reasoning in expert systems. We suggest a logic-based
framework which uses an informal notion of argument as the basis for its
representation of certainty. We argue that much of the manipulation of
arguments should be done with non-numeric certainties. Probability
measures should be introduced only late in the reasoning process, if at
all. This scheme is illustrated with examples of the construction and
evaluation of arguments. Although much of our work is tentative, we
believe that it provides a basis for a well founded knowledge-based
approach to plausible reasoning in expert systems.

1. INTRODUCTION

From the beginning- of expert systems research, attempts have been
made, in systems like MYCIN [1] and PROSPECTOR [6, 5], to devise a
calculus of plausible reasoning to deal with uncertain or heuristic
knowledge.
There has been considerable dispute about which calculus should be

used. Several authors (for example, [2, 5, 27]) have argued for the use of
the probability calculus. Others (for example, [3, 1, 22]) find the rep-
resentational capabilities of the probability calculus inadequate and
have argued strongly for alternative approaches. Our view is that the
theological intensity of the debate has obscured the fact that the opposed
camps are reconcilable. We will attempt to present a view of plausible
reasoning that elucidates the reasons for disagreement, and will propose
a framework for plausible reasoning that provides a solution to the
problems raised.

1.1 The probabilistic model

The probabilistic model of plausible reasoning has two distinct stages.

55

INFERENCE AND NEGATION IN HORN CLAUSE LOGIC

1. The formation of a model of the problem to be analysed. This is
sometimes called the frame of discernment [22]. This model should
contain all the relevant information known about the issues at hand.

2. The evaluation, according to the rules of probability calculus of the
probabilities of interest, so that a decision can be made.

The problems that confront a mechanization of this process in the
expert systems context are twofold. Firstly, evaluation may be difficult
because the model produced at stage 1 is under-specified and computa-
tionally expensive to evaluate. This problem is discussed in more detail
below. Secondly, and perhaps more fundamentally, there are consider-
able problems associated with the model and the process of model
formation.

1. The language of probability statements over propositional variables,
which is the 'standard', is an impoverished representation language. It
is difficult to mesh with first order logic, which is more desirable as a
general-purpose representation language.

2. Updating beliefs proceeds by conditionalization. It is more natural in
many cases to modify the model on receipt of new evidence. It is not
clear how this should be done within the probabilistic framework,
where the only mechanism available is conditionalization.

3. There are reasons to believe that, in many cases, people regard the
comparison of certainties as being impossible or at least undesirable.
Polya [20] gives as an example the question

'Is it more probable that the Vikings discovered America or that
Goldbach's conjecture is true?'

1.2. Alternative approaches and synthesis

There has been considerable discussion about alternatives to the prob-
abilistic approach. Proponents of the probabilistic view argue quite per-
suasively that, when decisions are to be made, the probabilistic approach
is the only one which meets justifiable criteria for rational decision-
making. These criteria are:

1. Any two probabilities are comparable. This implies a total ordering
on probabilties, and with the next two assumptions assigns all
probabilities to the interval [0, 1].

2. Every event has probability 0.

3. The certain event has probability 1.

4. The probability of the disjunction of two disjoint events is equal to
the sum of their individual probabilities.

56

NIBLETT

5.. The belief in p and q given evidence e (B(pq1e)) is a continuous
monotone function of B(q1e) and B (plqe).

We concede that these arguments offer a compelling reason for the use
of probabilities. This does not, however, mean that there is a straight-
forward way in which probabilities can be used universally within knowl-
edge-based systems. The assumption that certainties can be assigned
numeric values has been argued against above. These arguments are
symptomatic of two broad issues, which stem from the two components
of the probabalistic model discussed above. These are, knowledge
representation in the sense of building models to which probability
arguments can be applied and computational constraints which relate to
the complexity of straightforward implementations of probability
models. We tackle these issues separately.

1.3. Knowledge representation issues

It is a truism to state that the power of knowledge-based systems resides
in the knowledge. Two basic principles in the development of such
systems are that knowledge be represented explicitly wherever possible
and that the representation scheme used, together with its inference
mechanism should be able to represent and reason about all the necess-
ary knowledge. We feel that much of the confusion in the debate about
the relative merits of probability theory as a formalism has resulted from
concentration on the second of these principles, rather than the first. The
vigorous defence of probability in [2] argues persuasively that standard
Bayesian theory can adequately represent the necessary kinds of un-
certainty, if the concept of higher order probability is included. At the
same time Cheeseman admits that a conditional probability for an event
or proposition is a summarization of the total evidence for the event or
proposition in question. As it stands this violates the first principle
above.
A similar difficulty occurs with the vexed problem of priors. A

Bayesian asserts that the subjective prior distribution is important
because it provides a systematic method by which a large amount of
heterogeneous information can be summarized. Again, in the knowl-
edge-based context the objection is that this information is not accessible
to the reasoning agent.

It is of fundamental importance to realize that in the context of scien-
tific discovery or experimentation the particular form of the prior is not
crucial. With sufficient observational data the conclusion (or posterior
distribution) is indifferent to the choice of prior. This is clearly not the
case with most knowledge-based systems where a single 'experiment' is
usually conducted. In this case the prior distribution has a significant

57

INFERENCE AND NEGATION IN HORN CLAUSE LOGIC

effect on the final decision. Thus, more importance attaches to the
system's ability to justify the prior.
Let us review the problems discussed above with respect to represen-

tation and consider them in more detail. The problems were:

1. the limitations of the conventional propositional language;

2. the problem of updating beliefs by conditionalization;

3. inappropriate comparison of certainties.

1.3.1. Language limitations

Variants of propositional languages have been used almost exclusively
by Artificial Intelligence (Al) workers involved in plausible reasoning.
Little work has been done on first order probabilistic logics. Much of the
necessary theoretical background has been provided by [4] and [23]. We
will use the Horn clause variant of first order logic, which provides a
more powerful representation language. The certainty calculus is not
directly related to first order probabilistic logic.

1.3.2. Updating beliefs

The sole mechanism for belief updating provided in the probabilistic
calculus is conditionalization by use of Bayes' theorem. There are
various related objections to this.

It is often more natural to change the frame of discernment when new
information impinges, rather than to move to a new probability distribu-
tion by conditionalization.

It has been argued [2] that the complex relationships between propo-
sitions that are handled by truth maintenance systems are subsumed by
the appropriate specification of probability distribution. In the termin-
ology of [13] the theory is epistemologically adequate. There remains,
however, the problem of providing a computational mechanism for such
updating. This mechanism is not provided within probability theory.
There are further representational problems with the exclusive use of

conditionalization, such as the problem of asserting that an event has in
fact occurred [28], which are outside the scope of this paper.
In the language of machine learning you want to shift the bias. Any

objection by Bayesians on the grounds of the principal of total informa-
tion ignores the computational issues discussed below.

1.3.3. Comparison of certainties

Probabilities can always be compared. Sometimes this is not appropri-
ate. There should be a mechanism for deciding when comparisons can

58

NIBLETT

be made. Note: this works for 'pre-compiled' networks like PROSPECTOR
where comparison is guaranteed to work by the construction of the
network.

1.4. Complexity issues

Consider the propositional network of Figure 1. There are n concepts
(E1 . . . E,) and o(n) rules, represented by links between concepts—a
rule if E1 then Ek is shown by a link between Ej and Ek. The value of a
node without any descendants can be supplied by the user or supplied as
an a priori value. The problem that now confronts this system, whatever
calculus of plausible inference it uses is that the rules, together with the
inferential calculus will only determine o(n) constraints on the prob-
ability distribution of the E,. To specify the distribution completely, how-
ever, we need 2" constraints. This means either that some sort of blanket
assumption must be applied to determine the distribution, or that the
upper and lower bounds of relevant probabilities must be maintained. In
practice it is found that maintaining bounds without assumptions is not
fruitful as the bounds are 0 and 1 (or nearly so). Any assumptions that
are made tend to be unjustifiable except in special cases (see, for
example, [9, 19]).

E1

E2 E3

(E6 En) E3

Figure 1. A simple model of an inference system.

It is worth singling out one method for making such assumptions; the
method of least information [7, 10, 2]. The rationale of this method is to
specify as much knowledge as possible about a distribution in terms of
independence, marginal distributions, and so on, then to choose the dis-
tribution that adds as little information as possible. Good [7] shows that
this is equivalent to assuming independence of higher order interactions
between events. The objections to this method as a uniform mechanism
are twofold.

1. There are computational problems—in general the problem is
exponential in the number of propositions.

2. The method is very sensitive to the model used and the constraints

59

INFERENCE AND NEGATION IN HORN CLAUSE LOGIC

provided. A somewhat misleading analogy with statistical mechanics
(for example, [10]) is sometimes used to justify this procedure. Our
objection is, as before, that without a mechanism for examining the
assumptions that have been made and being able to modify the
underlying model this technique is not generally applicable.

A further criticism that can be levelled at the probabilistic approach
on computational grounds is that the formalism does not lend itself to
judging when information input by the user is inconsistent. It has been
argued in [2] that techniques of default reasoning and the use of ATMS
systems is subsumed by the probabilistic approach. Again we must
emphasize that this is not the case where interactions are complex and
track must be kept of assumptions on an individual basis. This can only
be done independently of the probability calculus. Cohen [3] argues this
in his case for non-numeric certainties.

1.4.1. Summary of objections

The following is a summary of our objections to the use of the prob-
ability calculus as the sole mechanism for belief updating.

1. It provides no assistance in the construction of a model of the
problem. As anyone who has done statistical analysis of data is aware
it is dangerous to apply general solutions to particular problems in a
rote fashion.

2. Conditionalization is not an adequate mechanism by itself to accom-
modate a computational description of belief revision.

3. Computational limitations require assumptions to be made about
distributions which cannot be represented within the probability
calculus.

We must emphasize that these objections are not to the use of Bayesian
techniques per se, but to their use as the sole knowledge representation
formalism in a knowledge-based system.

1.4.2. An alternative methodology

The above analysis suggests requirements for a computational frame-
work. The central notion is of an argument for a statement or proposi-
tion. We argue that in expert systems the primitive notion be that of an
argument for a concept's plausibility, and that at the level of knowledge
representation judgements of truth or probability are secondary. From
this viewpoint the traditional role of logic is to provide rules for the
construction of valid arguments, and valid arguments have in common
the property of,establishing the truth of their entailed propositions. The

60

NIB LETT

difference from the traditional notion of validity is that we are concerned
with the internal structure of proofs, as well as with their existence or
non-existence. Different arguments for the same proposition may have
different degrees of validity. From this point of view the role of probabil-
istic reasoning in expert systems is to provide numerical values for
arguments or their components for the purposes of comparison. That
these numbers are interpreted as probabilities ensures coherent results.
A rough equivalence with purely probabilistic systems can be drawn

up as in Table 1.

Table 1. Argument-based vs. probabilistic system.

Consistent assignment of priors Rules defining the circumstances in which
assumptions can be introduced

Detecting contradictions Maintaining the consistency of arguments
with constraints

Weighing evidence Constructing and comparing arguments

The framework we use is Horn clause logic. This provides a concrete
basis with which to illustrate the usefulness of our ideas, and has a
straightforward semantics. Technically our approach is to extend the
domain of truth values to include non-numeric certainties. Several
questions are raised about the notion of argument which we discuss
below.

Question 1 What is an argument?

Our approach is pragmatic, in that we adopt the existing framework of
Horn clause logic and its implementation via PROLOG.
We consider an argument for an atom to be a proof tree for that atom. A

proof tree is an 'exploded' version of the SLD proof for an atom. Figure 2
illustrates the proof tree for the goal ?- append([1],[2],[1,2]) (in PROLOG
syntax).
A goal can have more than one proof tree. As far as two-valued logic

goes this is immaterial, any proof of a (ground) atom will do. From our
perspective two different proofs of the same ground atom will have
different plausibilities. In our model therefore the truth value of an atom
is a function of all the proofs for that atom. We shall see that modelling of
a PRospEcToR-style inference network requires that certainties are
calculated from all proofs rather than just one.

Question 2 How do you construct, compare, and combine arguments
that are (a) mutually supporting, or (b) mutually contradictory?

The answer to this question is critical to our approach, and is largely
determined by the type of certainty that we allow. As discussed above it

61

INFERENCE AND NEGATION IN HORN CLAUSE LOGIC

reverse ([1,2], [2,1])

reverse([2], [2]) append([2],[1],[2,1])

reverse([1, [appenda],[2],[2]) append([],[1],[1])

Program:

reverse([1, []).
reverse([1-111], L):-

reverse(T, L1),
append(L1, [H], L).

Figure 2. A proof tree for the goal reverse ([1,2], [2,1]).

append([1, L, L).
append([111T], L, [1111,1]):-

append(T, L, L1).

is often undesirable that we be able to compare certainties directly.
Furthermore, we would like a framework for certainties that allows
symbolic reasoning to be performed. If two certainties are incomparable,
for example, we may wish to reconcile this with some form of rule-based
reasoning.
The natural structure for such certainties is a lattice. This is a partially

ordered set with operations of meet (11) and join (U). These operations
correspond to logical 'and' and 'or' respectively, and together with the
partial order form the basis of comparison and combination. In general,
if two certainties are not comparable these operations may not be
defined. Examples of such lattices are given in Section 3.1 and Section
3.2.
An interesting question is posed by the problem of negation when we

use the Horn clause approach. Previous work [17, 26] did not treat
negation. Our proposed system handles negation as a modified form of
negation as failure. The problems of providing a semantics for this form
of negation are similar to those of Horn clause logic, and can be handled
in much the same way. The use of some form of negation is necessary to
provide the expressive power of, for example, PROSPECTOR. When
numerical certainties are used this reduces to the probabilistic case
where B(/5)= 1 — B(p).

It is not clear that this approach is adequate to capture common uses
of negation in arguments.

Question 3 What does it mean for an argument to be consistent
(coherent)?

Arguments for or against propositions are central to our approach. It is
important that arguments are coherent. There are several kinds of
coherence. ,

62

NIBLETT

(1) consistent in the logical sense;
(2) admissible in the legal sense;

(3) comprehensible and relevant to a user;

(4) plausible to some degree.

All of these interpretations are useful in certain contexts. The desir-
ability of a computational approach other than the probability calculus
was mentioned above in the context of consistency. The question of the
admissibility of arguments, which arises very commonly in legal reason-
ing, does not seem directly amenable to a probabilistic approach either.
Our approach is to use the meta-logical capabilities of PROLOG and the

certainty space to represent these different notions. We illustrate this by
reference to the consistency issue.
Truth maintenance systems, as discussed in [11], use a propositional

representation for assumptions and detect inconsistency using a suitable
form of inference (decidable for propositional logic). In Section 3.2 we
show that a certainty lattice can be used to disallow inconsistent argu-
ments by assigning truth value false to them. In particular the argument
itself can be expressed in first order logic while the certainties are
propositional. Thus, the arguments can be phrased in a more expressive
language and the certainties in a decidable sublanguage.
We do not address the other issues relating to coherence in this paper.

1.5. Related approaches

Shapiro [26] describes a method of extending Horn clause logic to
handle uncertainty. The emphasis of his work differs in that he is not
concerned with the, use of arguments or non-numeric certainties. In
addition he does not discuss the problem of negation. Cohen [3]
describes a system of non-numeric certainties or endorsements that can
be used to reason about the uncertainty of arguments for and against
hypotheses. Cohen does not provide a formal definition of argument or
of the methods to be used for reasoning about the uncertainties used.
The system presented here seems to use a notion of argument, based on
the proof procedure of PROLOG programs (SLD resolution), which is
more limited than Cohen but attempts a more formal definition of the
notions used.
In the next section we shall briefly describe the framework of our

certainty calculus (described in more detail in [17]) and describe its
extension to negated goals.

2. THE FORMAL APPARATUS

2.1. Basic definitions

Definition A certainty space C is a complete lattice. That is a partially

63

INFERENCE AND NEGATION IN HORN CLAUSE LOGIC

ordered (under <) set with operations U and 11 (least upper bound and
greatest lower bound respectively) defined for every subset of C. The
greatest and least members of Care T and 1 respectively (sometimes
called true and false).

Given a certainty space Cwe define C+ to be the smallest complemented
distributive lattice with Cas a sublattice.

The lattice C provides the framework for certainty values in generalized
Horn clause programs. The extended lattice C+ provides certainties for
general programs with negative literals in the bodies of clauses.

Definition We extend < to sequences over C by defining: (c1, . , c„) <
(ci,. , c) iff c1 < c; and ... and c„< c„' .

Definition A function f from sequences of certainties to certainties in
some certainty space C is monotone iff for all sequences si and s2 of
length n over Cs, < s2 implies f(si) <f(s2).

Definition A general clause has the form A — B 1, . . . , Bk where A is a
positive literal and the B are positive or negative literals.

Definition A general logic program with uncertainties is a finite (non-
empty) set P of pairs of the form RA — B,f)1 where {A — B} is a general
clause, and f is a monotone function from sequences of certainties to
certainties. We shall sometimes write fA B for the function fpaired with
clause A — B.

It should be noted that the defintion of certainty function is more
general than that provided by Shapiro [26] in that it recognizes the order
of goals within a clause.

2.2. Semantics

We can now define the semantics of general logic programs with un-
certainties as an extension of that given by [17] for Horn clause
programs with uncertainty.

Definition The Herbrand Universe U(P) is defined recursively as

(1) The set of constant symbols in P (or the constant symbol a if there
are none);

(2) All atoms of the form p(t1,... , tn) where the ti are in U(P).

Definition The Hebrand base H(P) of a logic program Pis the set of all
ground atoms formed by using predicate symbols from P with ground
terms from the Herbrand Universe U(P). The set of all ground instances
of an atom A is written GI(A).

Definition An interpretation I of a general logic program with uncer-
tainties Pis a function from H(P) to a certainty space C.

64

NIB LETT

An interpretation I can be extended in the natural way to an inter-
pretation / + by defining I (-P)= 1(P) (where the complement of c E C+
is written C.). We shall identify /with this extended interpretation in the
following text.

Definition An interpretation /1 is < an interpretation /2 iff /1(a) < 12(a)
for all a in H (P).

Definition A model M of Pis an interpretation of P satisfying the follow-
ing conditions:

For any pair (A 4- B,f) in P and any ground instance A' — B; & . . . & B,;
of the clause, then M (A')> = f(M(B;), . . . , M(B)), where
M(-L) = M(L) as above.

2.2.1. Model theoretic semantics

With Horn clauses instead of clauses with negated literals the model
intersection property holds, where the pointwise intersections of two
models is itself a model. This does not hold for general programs, as can
be seen from the following example. Let P ={(a4--b,f),(b 4-- a f)) with
certainty space T, 1 and f (c) = c for c E T, 11. There are models with
just a true or just b true, but the intersection with neither true is not a
model.
Despite this we can define a minimal model Mmin for a program P as a

model having the property that if M' < Mmin, M' a model, then M' = Ma".
Minimal models for a program P exist (since for any P the interpretation
1(a) = T is a model and by use of Zorn's lemma). Unfortunately, as the
above example shows, there is no globally minimum model as there is for
the.Horn clause cage. We are now in a position to define the certainty of a
ground atom A with respect to a program P (where A E H(P)).

Definition The certainty c (A) of a ground atom A E H(P)=
n m(A).

Mamodel

Definition The certainty of an atom A (i.e. 3A) with respect to program P
is U c(a).

a(CAA)

When the certainty space C is the 2-element lattice, this definition
reduces to the usual definition of truth as 'true in all models'.
In [171 it is shown that if a program consists of pure Horn clauses then

a constructive fixpoint definition of the minimal model for the program
can be given.

2.2.2. Inference procedure

In this section we shall define an inference procedure SLDC resolution
(the 'c' for certainty), based on SLD resolution for logic with certainties

65

INFERENCE AND NEGATION IN HORN CLAUSE LOGIC

and we shall show that this procedure is correct in the sense that when it
terminates, the estimate of certainty produced is the model-theoretic
certainty of the (ground) atom (for a definition of 'SLD' resolution and
other terms see [121).

Definition Let P be a program, G a goal and R a safe computation rule.
An SLDC tree for P U {*- G } via R is defined as the smallest tree satisfying
the following criteria:

1. Each node of the tree is a conjunct of literal /certainty pairs.

2. The root of the tree is 4- G/CG where CG is the certainty of G.

3. For each node 4-- , p,, (n >1) in the tree, if R selects for a positive
literal/certainty pair 1,/c,) then the node has a descendant for
each clause/function pair (H.- B1, , Bk, f) in P such that /, and H
are unifiable. The descendant node is

(pi, • • • ,p1_, b1, • • • 9 bk9 P,+ 19 • • • Pk)
where bi= j E [1,1c] and where 0 is a most general unifier of 4
and H. The certainty c, is equal to

(f(cb,, cb))descendant nodes

4. For each node in the tree if the selected pair pi= - ei is negative (and
ground) then the root of the SLDC tree for 1, is — 4/ C., and the single
descendant of the node is — pi, , p,_i, Pì+ 1, • • •

5. Nodes Nodes which are empty have no descendants.

6. Nodes 4- 11 /C.1 • • • /C, which are non-empty and have no descend-
ants have c1= .1 for all i.

For any given atom all SLDC trees (for a given computation rule) are
identical modulo a renaming of variables. Hence we speak of 'the' SLDC
tree for an atom. The SLDC tree as defined here will form the basis of a
computational object. To be of real use we require that the tree be com-
putable in finite time, hence the following definitions.

Definition The index of an SLDC tree is 0 if the tree contains no negative
subgoals, otherwise it is equal to the number of negative subgoals plus
the sum of the indices of the SLDC trees of its negative subgoals. An SLDC
tree is finite, if it has a finite number of nodes and there is an integer N
such that the index of the tree is less than N.
With this definition of SLDC tree we can now show that if a ground

atom A has a (finite) SLDC tree with root — A/Ac then A, is equal to the
model-theoretic certainty of A.

Theorem If A is a ground atom and has a finite SLDC tree T with root
node 4- A/A, then Ac is the certainty of A.

66

N1BLETT

Proof We proceed by induction on the index of the SLDC tree.

Index =0 We proceed by induction on the depth of the tree. If the
depth is 1 then from the definition of SLDC tree we have root node
■- A/CA where

CA = fH_(true)

here Hand A have a most general unifier. Let Cbe the certainty of A
then by the definition of satisfaction for clauses C fit_ for each H.
Thus C UH...fH._(true). To show that equality holds we note that the
above lub is the lub of certainties over all ground instances of
clauses for A. From the definition of C the equality must hold.

If the depth of the tree is k (>1) then consider the descendants of
the root node — A/CA. Each such node is isomorphic to a conjunc-
tion of SLDC trees. Applying the inductive hypothesis each goal (as
the root of an SLDC tree of depth <k) has as associated certainty its
true certainty. Applying a similar argument to that of the previous
case, the hypothesis is proved.

Index = k> 0 Applying the inductive hypothesis to each negative
literal, we see that its SLDC tree returns the correct certainty. The
SLDC tree for A must therefore return the correct certainty.

2.3. Discussion

We have demonstrated the soundness of SLDC resolution. Whenever an
SLDC tree is finite the value assigned to its root is the certainty of the atom
at the root. It is straightforward to construct an interpreter in PROLOG to
find such trees.
The interpreter will fail to terminate whenever the corresponding SLDC

search tree is infinite. In practice this is not inconvenient. If approxi-
mations to the truth values of literals are sufficient then it is possible to
build interpreters that will terminate on a larger set of root literals. For
such approximations to be underestimates of the true values we still
require that the SLD trees corresponding to negated goals are finite.
The SLDC tree corresponds to all possible arguments for an hypothesis.

A single argument corresponds to a branch of the SLDC tree, as a proof for
a PROLOG goal corresponds to a single branch of its SLD tree.
In some circumstances (see Section 3.2) the SLDC tree is decomposable

in the sense that the certainty of the root goal can be derived from the
certainty of the individual arguments for the goal. This property is
important for expert systems, where it is more natural, in many cases, to
work with individual arguments.
In the next two sections we shall see two different implementations of

this calculus, both of which use negation.

67

INFERENCE AND NEGATION IN HORN CLAUSE LOGIC

3. IMPLEMENTATION EXAMPLES

We shall describe two implementations of specific inference mechanisms
within our framework. The two implementations differ in the certainty
lattice used. Both implementations use the abstract interpreters of
Figure 3. The first interpreter constructs single arguments for or against
a proposition, the second constructs all arguments possible from the
input program. Both interpreters use the default top-down inference
strategy of PROLOG. The difference is that the first evaluates a single
argument, while the second evaluates all arguments. Goals that involve
lattice calculations are italicized.

% Interpreter for single arguments

solve((A,B), Certainty):—
solve(A, CertA),
solve(B, CertB),
combine and(CertA, CertB, Certainty).

solve(not A, Certainty):—
solve(A, Min, NotA),
lattice_not(NotA, Certainty).

solve(Goal, Certainty):—
clause(Function, Goal, Body),
solve(Body, BodyCert),
lattice func(Function, BodyCert, Certainty)

% Interpreter to evaluate all arguments

solveall((A,B), Certainty):—
solveall (A, CertA),
solveall(B, CertB),
lattice_and(CertA, CertB, Certainty).

solveall(not A, Certainty):—
solveall(A, Min, NotA),
lattice not(NotA, Certainty).

solveall(Goal, Certainty):—
findall(Cert, (

clause(Function, Goal, Body),
solveall(Body, BodyCert), -
lattice func(Function, BodyCert, Cert)),
CertList),

lattice_or(CertList, Certainty).

Figure 3. Two interp,reters in PROLOG.

68

NIB LETT

3.1. Example: A PROSPECTOR-like scheme

To demonstrate the range of our framework, we implement the plausible
reasoning mechanism used by the PROSPECTOR expert system, and show
that this can be expressed within our framework. As we wish to show that
certainties for arguments can be combined we shall use the weight of
evidence for a proposition as the measure of certainty.
Following Good [8] we define the weight of evidence for concerning H

provided by E (W(H:E)) as:

W(H:E) =log (P(EIH)/P(EIR)) (1)

=log (0(HIE)/0(H)) (2)

The weight of evidence has the nice property that if El and E2 are
conditionally independent given • both H and H then
W(H:EIE2)= W(H:E1)+ W(H:E2).
We shall use propositional (variable-free) rules throughout. The

PROSPECTOR formalism is itself based on a propositional description of
events. Our presentation focuses on showing that the probabilistic
inference mechanism of PROSPECTOR can be re-phrased in terms of
weights of evidence. There are three types of combination that need to
be considered:

(1) the evaluation of if-then rules (including chaining);

(2) the evaluation of Boolean combinations of events;

(3) the combination of multiple rules for an event.

3.1.1. Evaluation of if-then rules

We have a rule of the form if E then (probably) H. In general an obser-
vation E' is made that provides an estimate of the probability of E. We
can calculate as follows.

p(HIE') = p(HEIE')+ p(HEIE') (3)

= p(HIEE')p(EIE')+ p(HIEE')p(E1E') (4)

(Markov) = p(HIE)p(EIE')+ p(HIE)p(EIE') (5)

This calculation involves a Markov-type assumption that if the
probability of E is known with certainty (true or false) then the observa-
tion E' does not affect the conditional probability of H.
We can now calculate the posterior odds of Hgiven E'.

0(HIE')—
p(HIE)p(EIE')+ p(HIE)p(EIE')

p(HIE)p(EIE')+ p(1-11E)p(EIE')

Recall that W(H:E')=log(0 (HIE')) — log(0(H)). To calculate this

69

INFERENCE AND NEGATION IN HORN CLAUSE LOGIC

weight we require an estimate of the prior odds on H. In addition, if we
wish to phrase the information provided by E' in terms of a weight of
evidence for Ewe require a prior for Et.
We shall now show how updating can be performed using weights of

evidence. For convenience we define the following parameters.

a = p(H1E) =p(HIE) =P(H) y = p(E)
Let co = W (E:E'). Then we can calculate p(E1E') =A' in terms of the
weight of evidence. P(E1E')= y' = y2w/(1 + y(2°) — 1)). Similarly

ay'+fl(1— y')
W(H:E')= log log

(1— a)y'+ (1 — p)(1 — y') 1—i'

This demonstrates an updating mechanism that works solely in terms of
weights of evidence. A particular rule is determined by the four par-
ameters a, 3, 77, and y. These parameters are determined by the expert.
Events E that are supplied by the user can be determined either from y'
or directly from co.

3.1.2. Boolean combinations of events

The rules used by PROSPECTOR for Boolean combinations of events are
based on fuzzy logic. In terms of weights of evidence they are expressed
as follows:

W(H1r121 E) = min{W(1111E), W(H21E)} (6)

W(illE) = — W(HIE) (7)

W(1/1 or H2IE) =max{W(HilE), W(H21E)} (8)

3.1.3. Combining multiple evidence

Given two rules providing evidence for H (if El then Hand if E2 then H)
we can sum the weights of evidence, provided that we make the assump-
tion which is made in PROSPECTOR that Ei and E2 are conditionally
independent given both Hand H.

3.1.4. Implementation of the PROSPECTOR mechanism

It is straightforward to verify that the updating function of Equation (1)
satisfies the monotonicity condition, as do the Boolean operations of
Equation (2). We shall now provide PROLOG versions of the lattice
relations of the above interpreters.

tThis can lead to an inconsistent formulation. In PROSPECTOR this was accepted by
performing a piecewise linear approximation to the above equation.

70

NIB LETT

lattice_and (WeightA, WeightB, Weight):—
max(WeightA, WeightB, Weight).

lattice_or (0,0),
lattice_or([Weight —Weights], Sum):—
lattice_or(Weights, TailSum),
Sum is Weight + TailSum.

lattice_not (Weight, NegWeight):—
NegWeight is 0-Weight.

lattice_func(func(a,P,y,n), Weight, Result):—
y' is y2weight/(1 + y(2welght — 1),

ay'l-P(1 — y')
Result is log log

(1 — a)y'+ (1 —)3)(1 — y') 1—,j

The form of Equation (1) shows us that the updating function is not
additive in the sense that the sum of weights for each argument for an
hypothesis H does not necessarily provide the correct weight for H as is
calculated by the predicate solveall.

3.2. Non-numerical certainties

We now describe a non-numerical system of certainties, illustrative of
our approach to plausible reasoning. This system is a simplified version
of an implementation in the YAPES expert system shell [18]. The aims of
this system are:

(1) to make explicit the use of arguments;

(2) to facilitate the use of meta-level reasoning about uncertainty;
(3) to demonstrate how user interaction can be implemented in con-

junction with uncertain reasoning.

3.2.1. The certainty lattice

The certainty lattice we consider has as its basic elements ground literals,
each literal having an associated justification (written as literal/justifica-
tion). The justifications are included solely to provide information to the
user of the system. These literals stand for assumptions which, if true,
ensure the truth of their associated goals (with respect to a given
program). The basic certainties are treated as propositions in that their
internal structure as terms is ignored. Thus the literal sex(male) is
unconnected with the literal sex(female). The lattice operations of U,11
and — are implemented as the propositional operations or, and, and — re-
spectively. The lattice has a bottom element false and a top element true.
This lattice satisfies the requirements of Section 2. The implementation

71

INFERENCE AND NEGATION IN HORN CLAUSE LOGIC

of the lattice operations uses a propositional simplifier based on Wang's
algorithm [21] which reduces expressions to disjunctive normal form.
The reason for using this lattice in the expert system context is to

minimize the number of questions that the user is asked, without com-
promising the accuracy of results.
A simple example taken from the domain of claiming travelling

expenses is used in illustration. One question that we may need to ask is
whether the trip was at home (within the United Kingdom) or abroad.
We may wish to specify that it should be assumed that the trip is within
the UK if the distance travelled on the trip is known to be less than 300
kilometres. The clause for this is written as follows:

assume::location(home):--
distance(K)
K < 300.

where :: is defined as an infix operator. In general a clause of the form
assume::H:—B corresponds in our certainty calculus to the clause with
certainties (1/4- B,f) where f (C) = C and H /B.

If we assume that the distance travelled was 200 km then the certainty
of the literal location(home) is location(home)/(distance(200),200 <
300).

3.2.2. Calculating certainties

We are now in a position to consider the evaluation of certainties. The
first interpreter of Fig. 3 can be extended with the following lattice
operations:

lattice_and(A, B, AandB):—
simp(A and B, AandB).

lattice_or(A, B, AorB):—
simp (A or B, AorB).

lattice_not(A, ANot):—
simp(-A, ANot).

lattice_func(Just, Body, Head):—
simp(Just and Body, Head).

This simple interpreter returns values that do not have a straightforward
connection with the model-theoretic certainty. The reason for this is its
behaviour on negated goals. If an argument contains no negated goals
then the certainty returned will be an underestimate of the model-
theoretic certainty. The value returned for negated goals is, however, an
over-estimate of the model-theoretic certainty. The second interpreter
of Fig. 3 will return the correct certainty. We should note that the
propositional lattice is additive in the sense that the disjunction of the

72

NIBLETT

certainties of all the separate arguments for a goal H is equal to the
certainty returned by the second interpreter.
In practice it is not clear that this more 'correct' treatment of negation

is either necessary or desirable. In many cases of practical reasoning this
implicit use of the closed world assumption is not considered to produce
valid arguments (in a law court for example).
Let us consider the problem of deciding the location of an employee's

trip in a little more detail. The clause we considered specifies conditions
under which it is justifiable to assume the location was 'home'. As
formulated this provides no information as to the goal location(abroad).
The interpreter of Fig. 3 will fail on this goal, returning the value false by
negation as failure. This is unsatisfactory for two reasons.

1. Typically, when creating a knowledge base the programmer will have
in mind the fact that a trip is either at home or abroad. With this
additional knowledge our original clause is relevant to the goal
location(abroad). Broadly speaking if the distance travelled was
200 km we are entitled to say that the trip was not abroad because we
assume that it is at home, given the distance actually travelled.

2. Horn clause logic cannot express the fact that the locations 'home'
and 'abroad' are mutually exclusive.

We deal with (2) by operating at the meta-level with the propositional
simplifier. We add a meta-level assertion to the propositional simplifier
for certainties that the conjunct of location(X) and location(Y) with
X Y reduces to false. This assertion is used only if the variables are
instantiated. Use of such constraints within the simplifier ensures that a
particular argument will be consistent.
We deal with (2) at the meta-level as well. In this case we assert that the

goals location(abroad) and location(home) can be generalized to the
goal location(Place) which has one and only one solution. The imple-
mentation involves the addition of a new clause to the interpreter of Fig.
3. The following clause is added before the third clause for solve.

solve(Goal, Certainty):—
generalizes(Goal, General),!,
solve(Goal, PlusValue),
findall(Val,(solve(General, Val),

General 0 Goal), MinusList),
lattice_or(MinusList, Minus),
lattice_not(Minus, Plus2Value),
lattice_and(PlusValue, Plus2Value, Certainty).

The goal generalizes(Goal, General) means that the generalization
General of Goal has one and only one solution. The issue of maintaining

73

. INFERENCE AND NEGATION IN HORN CLAUSE LOGIC

consistency arises in the above example, where it is inconsistent to
assume that the trip is both at home and abroad. It is not possible to
make both assumptions simultaneously because the conjunct of these
two certainty values is defined to be false. In this case either one
assumption or the other may be made, but not both. The detection of
such inconsistencies is effective because we are dealing with the propo-
sitional calculus, which is decidable. This aspect of our implementation
has some similarities with the assumption-based truth maintenance
system of De Kleer [II].

3.2.3. User interface

An important property of expert systems is that they require consider-
able interaction with the user. Following Sergot [24] we can implement
user interaction by considering the user as a source of unit clauses. This
distinction should be transparent to the inference mechanism of the
expert system.
Let us consider our example concerning the location of an employee's

business trip. We assume that the user of the system knows the location,
the inference system is making an assumption to avoid having to ask the
question of the user. It is not always the case that assumptions are made
about relations that can be asked of the user. It may be that there is
genuine uncertainty involved, as in the domain of geological inter-
pretation modelled by PROSPECTOR. It may also be the case that the user
may not know, in some circumstances, the truth-value of a relation.
The strategy pursued in YAPES and described here is to ask the user

about a relation only when it would otherwise be proven false (by
negation as failure). The goal location(abroad) in the above example
would therefore be assumed false since we assume that the location is
home. This strategy can be readily implemented when we are looking for
a single argument for each goal. It is sufficient to add the following clause
as the last clause of the solve/3 relation.

solve(Goal, true):—
askable(Goal),
ask_user(Goal).

When we require all arguments for a goal we must define two modes of
search: the first where the user is not asked, and the second where the
user is asked. Again this distinction must be made at the meta-level.

4. CONCLUSIONS

We have demonstrated a system of plausible inference, based on Horn

74

NIB LETT

clause logic, which differs from other systems of plausible inference in its
emphasis on arguments. We have illustrated the scope of the system by
implementing a PRospEcToR-like plausible inference system as well as a
non-numerical system. The advantages of the system can be summarized
as:

1. A formal semantics which guarantees the correctness of results. In
particular we can say with precision that when all the negative goals
are evaluated completely the computed certainty will be less than or
equal to the true certainty.

2. The use of non-numeric certainties allows us to talk about consistent
and inconsistent assumptions at a semantic level. Numeric systems
based on probabilities, and their updating by conditionalization can-
not do this.

3. Fuller use can be made of the information available to the user,
namely the argument (proof tree for PROLOG) created when running a
query. This allows the expert system builder to pay attention to
aspects of knowledge representation, in its relation to plausible
reasoning, that are not captured by approaches which assume the
argument is decomposable in the sense that any subargument can be
characterized by a single number. This effect is particularly notice-
able when analysing or debugging results. The extra semantic infor-
mation available from the non-numeric certainties allows the
dependencies between various results, and the reason for them, to be
clearly seen.

The interpreter of Section 3.2 (with a little elaboration) has been
implemented and runs inside the YAPES expert system shell [18]. One
major difference between the YAPES implementation and Fig. 3 is the
incorporation of a simple mechanism for intelligent backtracking. This
has the advantages of (a) minimizing the number of questions that need
to be asked of the user and (b) easing the task of explanation.

(a) If we have a goal that is assumed to be true with some instantiation of
variables, and a subsequent goal fails, we do not want to backtrack
and ask the user whether or not the goal has another solution unless
the variable binding that was assumed is or may be responsible for
the failure. In this case it is worth doing some extra computation to
avoid burdening the user with useless (and probably confusing)
questions.

(b) A major concern with expert systems is to ensure that they can
generate explanations of their behaviour. We have found that when
an unnecessary question is asked (unnecessary because a sub-
sequent goal must fail) the user can lose confidence in the system
and/or become confused.

75

INFERENCE AND NEGATION IN HORN CLAUSE LOGIC

The most intriguing application of a general-purpose plausible
reasoning mechanism of this kind is to the processing of inductively
derived rules. It is a truism to say that the major problem with the large-
scale application of knowledge-based systems technology is the process
of knowledge acquisition itself. We have been interested in the inductive
acquisition of such knowledge for some years. The applications we are
considering at present are ones where there is a large body of existing
data in machine-readable form and a need for expert analysis of such
data. One such application is described in [16]; others can be seen in [25,
14, 15]. Since an inductive learning mechanism can, by definition, be
wrong we need to attach some measure of plausibility to the rules that
are generated. These plausibility measures generally carry much more
information than can be conveyed by a mere numerical measure of
probability. We need to know for instance the circumstances in which
rules are applicable, and the degree to which they are applicable.

Acknowledgement

This work was supported by the Office of Naval Research under contract N00014-85-G-
0243.

REFERENCES

1. Buchanan, B. G. and Shortliffe, E. H. (1984). Rule based expert systems. Addison
Wesley.

2. Cheeseman, P. C. (1985). In defence of probability. In Proceedings of HCA1-85, pp.
1002-9, Kaufmann, Los Angeles, CA.

3. Cohen, P. R. (1985). Heuristic reasoning about uncertainty: An artificial intelligence
approach. Pitman, London.

4. Gaifman, H. (1964). Concerning measures on first-order calculi. Israeli Journal of
Mathematics, 2, pp. 1-18.

5. Gaschnig, J. (1982). Application of the PROSPECTOR system to geological
exploration problems. In Machine Intelligence 10, (eds J. Hayes, D. Michie, and L.
Mikulich). Ellis Horwood, Chichester.

6. Gaschnig, J. (1980). Development of uranium exploration models for the
PROSPECTOR expert system. Final Report, SRI International, Menlo Park, CA.

7. Good,!. J. (1963). Maximum entropy for hypothesis formulation, especially for
multidimensional contingency tables. Annals of Mathematical Statistics, 34, pp.
911-34.

8. Good, I. J. (1950). Probability and the weighing of evidence. Hafners, New York.
9. Gordon, J. and Shortliffe, E. H. (1985). A method for managing evidential

reasoning in a hierarchical hypothesis space. Artificial Intelligence, 26, No. 3,
323-58.

10. Jaynes, E. T. (1957). Information theory and statistical mechanics i. Phys. Review,
106, pp. 620-30.

11. de Kleer, J. (1986). An assumption-based TMS. Artificial Intelligence, 28, No. 2,
127-62.

12. Lloyd, J. W. (1984). Foundations of logic programming. Springer-Verlag, Berlin.
13. McCarthy, J. and Hayes, P. J. (1969). Some philosophical problems from the

76

NIBLETT

standpoint of artificial intelligence. In Machine Intelligence 4 (eds B. Meltzer and D.
Michie), pp. 463-502, Edinburgh University Press, Edinburgh.

14. Michalski, R. and Chilausky, R. (1980). Learning by being told and learning from
examples: an experimental comparison of the two methods of knowledge
acquisition in the context of developing an expert system for soybean diagnosis.
Policy Analysis and Information Systems, 4, No. 2,125-60.

15. Michalski, R., Mozetic, I., Hong, J., and Lavrac, N. (1986). The AQ15 inductive
learning system: an overview and experiments. In Proceedings of IMAL 1986,
Universite de Paris-Sud, Orsay.

16. Niblett, T. (1984). The CLR system-an introduction. TIRM 84-015, The Turing
Institute, Glasgow.

17. Niblett, T. (1985). Judgemental reasoning for expert systems. In Proc. IJCAI 1985,
pp. 315-17.

18. Niblett, T. (1985). YAPES: Yet Another Prolog Expert System. TIRM 84-008, The
Turing Institute, Glasgow.

19. Pearl, J. (1982). Reverend Bayes on inference engines: a distributed hierarchical
approach. In Proc AAAI, pp. 133-6.

20. Polya, G. (1954). Patterns of plausible inference. Princeton University Press.
21. Raphael, B. (1976). The thinking computer: mind inside matter. W. H. Freeman, San

Francisco.
22. Schafer, G. (1976). A mathematical theory of evidence. Princeton University Press.
23. Scott, D. and Krauss, P. (1966). Assigning probabilities to logical formulas. In

Aspects of Inductive Logic (eds P. Suppes and J. Hintikka), pp. 219-64,
North-Holland, Amsterdam.

24. Sergot, M. (1983). A query-the-user facility for logic programs. In Proc. European
Conference on Integrated Interactive Computing Systems (eds P. Dagano and E.
Sandewall), North-Holland, New York.

25. Shapiro, A. and Niblett, T. (1981). Automatic induction of classification rules for a
chess endgame. In Advances in Computer Chess (ed. M. R. B. Clarke), pp. 73-91,
Pergamon, Oxford.

26. Shapiro, E. Y. (1983). Logic programs with uncertainties. In Proc. IJCAI-83, pp.
520-32.

27. Spiegelhalter, D. J. (1986). Synthesis of AI and Bayesian methods in medical expert
systems. In AI Methods in Statistics Seminar, pp. 125-7, Unicorn Seminars Ltd,
London.

28. Suppes, P. (1966). Probabilistic inference and the concept of total evidence. In
Aspects of Inductive Logic (eds P. Suppes and J. Hintikka), pp. 49-65,
North-Holland, Amsterdam.

77

.

A Note On First-Order Theories of

Individual Concepts and Propositions

B. Arbab
IBM Corporation,
Los Angeles Scientific Center, USA

Abstract

Certain classes of sentences when formalized in first-order logic, may
give rise to paradoxical conclusions. Within this class are sentences with
one or more occurrences of such words as know, believe, aware, discover,
and so on.
McCarthy (1979) has introduced the first order theory of individual

concepts and propositions as a formal language for representing such
sentences. McCarthy's formal language is intended to avoid paradoxical
conclusions. This paper presents an example whose formalization in the
latter language gives rise to similar paradoxical conclusions.
An alternative scheme for representation and manipulation of such

sentences in first order logic, with no modal operators, is then outlined.

1. INTRODUCTION

Sentences involving knowledge, belief, and so on when formalized in
first-order logic may give rise to highly counter-intuitive conclusions.
For example, the two sentences:

King George wished to know whether Sir Walter Scott is the
author of Waverley. (1)

and

Sir Walter Scott is the author of Waverley. (2)

if naïvely formalizedt in first-order logic, which includes axioms of
equality, will give rise to the conclusion that:

tFor example, formalizing 1 as K(G,Eq(S,A(W))) where K is a binary predicate
symbol for wished to know whether, G a primitive constant for King George, Eq a
function symbol for equals, S a primitive constant for Sir Walter Scott, A a function
symbol for Author of, and Wa primitive constant for Waverley. And formalizing 2 as
Eq (S,A(W)) permits both K (G,Eq(S,S)) and K (G,Eq (A(W),A(W))) as conclusions on
the basis of the axioms of equality (that two equals can everywhere be substituted one
for another).

79

FIRST-ORDER THEORIES OF INDIVIDUAL CONCEPTS

King George wished to know whether Sir Walter Scott
is Sir Walter Scott. (3)

The latter conclusion, though not contradictory, is highly counter-
intuitive. As Russell (1905) put it: 'an interest in the law of identity can
hardly be attributed to the first gentleman of Europe'. Following Church
(1988) the above is referred to as the paradoxt of the name relation.

McCarthy considers a similar example:

Pat knows Mike's telephone number. (4)

Mary has the same telephone number as Mike. (5)

to show that a normal formalization in first-order logic will give rise to
the paradoxical conclusion:

Pat knows Mary's telephone number. (6)

and that such conclusions are not possible in the proposed first-order
theories of individual concepts and proposition.

The paradox of the name relation was first discussed by Frege
(1892)$, whose informal solution introduced two new ideas. First, the
notion of an indirect (sometimes called oblique or opaque) context
which occurs whenever words like know, believe, seek, search, necesswy,
possible, and so on are used in a sentence. Second, that singular names§
have not only a denotation but also a sensell.
At the heart of Frege's solution lies the idea that names which occur in

an indirect context, shift their denotation to what was their sense in an
ordinary context. Likewise, a name which occurs in a doubly indirect

t Carnap (1956) used the word antinomy, but the word paradox is preferable since no
apparent contradiction occurs in the absence of any further assumptions.
$The idea of a formal language was first conceived by Frege (1879), who was not

completely satisfied with his choice of the identity relation (what today are called the
axioms of equality). In his 1892 paper, he clearly shows the shortcomings of the earlier
identity relation and advocates a new relation which takes into account the sense of a
name as well as its denotation.
§A singular name is one which has as part of its meaning that there is only one thing

denoted. Pat, for example, is a singular name that denotes a particular person. Human,
however, is a general name and not singular. In a formalized language, variables play the
role of general names.

IIThat which two names (sentences) of languages Ll and 12 (not necessarily different)
must have in common to be correct translations of one another. From an intuitive
(intensional) point of view it is clear what is meant by sense of a name. It is not, however,
at first sight clear from a computational (extensional) point of view what Frege had in
mind in referring to the sense of a name. In fact senses are said to be more or less
intensional entities and not extensional, even though no exact and general definition
exists for drawing a sharp line between intensionality and extensionality. The present
author has found a convenient explication through use of a computing metaphor (Arbab
1988). In this metaphor the sense of a name corresponds to a pointer (the memory
location where the name is stored).

80

ARBAB

context will denote its singly indirect sense. In short, an infinite array of
senses is called for. Otherwise, the paradox can be reconstructed at level
N +1, where there are N levels of senses of a name (an example is given
later in this paper).
In this paper an example is presented whose formalization in the first

order theories of individual concepts and propositions will give rise to
similar paradoxical conclusions. The particular example presented
involves a doubly indirect context (someone knows whether someone
knows something). It may very well be that McCarthy (1979) knew
about the problem presented here, for his concluding remarks are as
follows:

Creary in particular has shown the inadequacy of the formalism for expressing all
readings of the ambiguous sentence Tat knows that Mike knows what Joan last asserted'.
There has not been time to modify the formalism to fix this inadequacy, but it seems likely
that concepts of concepts are required for an adequate treatment.

The particular problem demonstrated by Lewis Creary is unknown to
the present author. The solution to the problem presented in this paper,
however, does require the formalized language to permit concepts of
concepts. In fact, as pointed out by Frege (1892), an infinite array of
concepts is needed. Otherwise, the paradox can be reconstructed at level
N + 1, where there are N levels of concepts.
Construction of a formal language based on sense and denotation has

proved to be a difficult task. Church presents three different alternatives
under which a formulation of the logic of sense and denotation can be
carried out. The three alternatives correspond to different sets of
assumptions under which two sentences can be considered to have the
same sense or express the same proposition: That two sentences S and
Si have the same sense (express the same proposition) if and only if
S = Si is logically valid is called Alt(2). A stronger criterion or identity
between senses, Alt(1), is that S is convertible to Si according to the
rules of lambda calculus. The strongest criterion of identity between
senses, Alt(0), is that S and Si differ at most by one or more alphabetic
changes of bound variables, or one or more interchanges of synony-
moust notations.
A sound system of axioms characterizing two of these alternatives,

Alt(2) and Alt(1), has been specified by Church (1946, 1973, 1987). For-
mulation of the logic of sense and denotation remains open under Alt(0),
the strongest alternative under which two sentences can be considered to
express the same proposition. The solution outlined at the end of this
paper is under Alt(0). However, it differs from the logic of sense and
denotation.

f Two constants are said to be synonymous if they have the same sense as well as
denotation. They are concurrent if they have the same denotation.

81

FIRST-ORDER THEORIES OF INDIVIDUAL CONCEPTS

2. McCARTHY'S SOLUTION

In order to lay the groundwork for reintroducing the paradox of the

name relation in the first-order theory of individual concepts and
propositions, some definitions and one example from McCarthy (1979)
are reproduced in this section. A new example is then presented, whose
analysis in the light of the definitions given leads, however, to a para-
doxical conclusion.

2.1. Definitions

From the third paragraph on page 130 and conventions 1-9 of page 131
of McCarthy (1979), it is concluded that the formalized language for
expressing items of knowledge has the following two linguistic domains.

1. Real world objects constitute a linguistic domain whose members
are (or at least include) italic terms with all letters lower case. Members
of this linguistic domain denote individuals in the real world. For
example 'mike' is a member of this (linguistic) domain and denotes some
individual in the real world, whom (or which) we may therefore call
simply mike. Moreover, the name 'mike' has in addition to its quotation
name also the name 'Mike'. Thus mike is the denotation of the name
'Mike', and the intention is to use the name 'Mike' in place of the more
usual quotation name 'mike'.

2. Concept objects constitute a linguistic domain whose members are
(or include) italic terms starting with a capital letter. Such terms are
understood as denoting concepts of individuals, but the question as to
what these concepts really are is left open as not being central to the
theory. McCarthy does, however, remark that they may be regarded as
abstract expressions, but does not explain further. For example, Mike is
the concept associated with the name 'Mike'.

Some philosophical issues concerning the nature of the members of
these two domains are left open. It is clear, however, from paragraph 3 of
page 130 of McCarthy, that members of these two domains are not to be
ordinary names, as in Frege (1892), which have both a denotation and a
sense. Members of these two domains are capable only of denoting; not
of connoting. Consider the example on page 129 of McCarthy, which
was repeated in the introduction section. McCarthy avoids the para-
doxical conclusion by formalizing sentence 4, as:

know(pat,Telephone (Mike)) (7)

where formula 7 follows from formulas (1) and (10) of McCarthy, with
function types

know: Realworldobjects X Concepts t
Telephone: concepts Concepts

82

ARBAB

Mike E Concepts
pat E Realworldobjects

The above notation is used for specifying the type of each function
symbol and each predicate symbol. For example, the first argument of
know is from the domain Realworldobjects. The second argument is
from the Concepts domain and the result is the truth-value t. The argu-
ment of the function Telephone is from the Concepts domain, as is its
result. Sentence 5 is formalized as:

true (Equal((Telephone (Mary), Telephone (Mike))) (8)

This is formula (26) of McCarthy (1979) with function types

true: Concepts t
Equal: Concepts x Concepts -+ Concepts
Telephone: Concepts Concepts
Mike E Concepts
Maly E Concepts

It is claimed that from 7 and 8 it does not follow that

know (pat,Telephone (Maty)) (9)

where 9 follows from equations (27) and (10) of McCarthy and is the
formalization of the paradoxical conclusion 6. Let us examine the basis
of this claim. Formula 8 seems to assert that the two concepts of Mary's
telephone number and Mike's telephone number are equal to each other.
If this were the case, by the axioms of equality we would be able to arrive
at the paradoxical conclusion 9, by replacing Telephone(Mary) by
Telephone(Mike) in formula 7. However, sentence 5 is not an assertion
about the concepts of the telephone numbers of Mary and Mike, because
it is not a sentence occurring in an indirect context. Sentence 5 rather, is
an assertion about the two telephone numbers of Mike and Mary. Thus it
is better to formalize 5 as

equal(denot(Telephone(Mary)),denot(Telephone(Mike))) (10)

where function types are as follows:

equal: Realworldobjects x Realworldobjects t
denot: Concepts Realworldobjects
Telephone: Concepts Concepts
Mike E Concepts
Mary E Concepts

The well-formed formula 9 does not follow from 7 and 10 because
formula 10 expresses an equality between the denotations of Tele-
phone(Mike) and Telephone(Mary). On the other hand, 7 is a relation

83

FIRST-ORDER THEORIES OF INDIVIDUAL CONCEPTS

between pat and Telephone(Mike). From what two formulas can
formula 9 be obtained as a conclusion? Consider the sentence

Pat knows whether Mike's telephone number is the same
as Mary's telephone number (11)

which is formalized as

true(K(Pat,Equal(Telephone(Mary),Telephone(Mike)))) (12)

This is formula (28) of McCarthy. According to him, 7 and 12 plus
suitable axioms about knowledge will allow 9 as a conclusion.

2.2. New Example

Consider now the following example in which formalization in the
theory proceeds analogously to that of the above example. The paradox-
ical conclusion, however, cannot be avoided. The two sentences are:

•
Pat knows whether Pythagoras knows whether the morning
star is the evening star (13)

and

Pat knows whether the morning star is the evening star

the paradoxical conclusion which cannot be avoided is:

Pat knows whether Pythagoras knows whether the morning
star is the morning star

(14)

(15)

Sentence 13 should be formalized in such a way that Pat, Pythagoras,
Mstar, and Estar are concepts associated with Pat, Pythagoras, the
morning star and the evening star.

true(Know(Pat,Know(Pythagoras,Equal(Mstar,Estar)))) (16)

where types are as follows:

Know: Concepts X Concepts Concepts

Equal: Concepts Concepts

Pat,Pythagoras,Mstar,Estar E Concepts

Sentence 14 would have to be formalized as

know(pat,Equal(Mstar,Estar)) (17)

From 16 and 17 and the suitable axioms of knowledge as used in the
example on page 129 of McCarthy we can conclude that

true(Know(Pat,Know(Pythagoras,Equal(Mstar,Mstar)))) (18)

84

ARBAB

This is the well-formed formula corresponding to the paradoxical con-
clusion 15. This conclusion can be reached on the ground that 16
expresses a relation between Mstar and the Estar and 17 expresses that
Pat knows whether the two are equal. Thus, he claims, by the axioms of
equality and the suitable axioms of knowledge, the two can be inter-
changed in any well-formed formula.
Sentence 15 is not a conclusion of 13 and 14 according to Frege's

(1892) original solution. Unlike McCarthy's first-order theories of first-
order propositions and concepts, Frege allows an infinite hierarchy of
concepts of names. Furthermore, every time a name occurs at level N of
an indirect context, it will automatically shift its denotation to what was
the sense of the same name at a level N— 1 indirect context. Level zero of
indirect context is of course the same as the ordinary context for names.
In 13 the morning star and the evening star occur in a doubly indirect con-
text, once in the context of Pythagoras knowing, and again in the context
of Pat knowing.
The substitution of the morning star for the evening star in sentence 13

is not allowed on the ground that the two names denote two different
objects. In 14 the names the morning star and the evening star occur in a
singly direct context and thus denote the sense of the same names in an
ordinary context. Whereas in 13 the two names occur in a doubly
indirect context and thus denote the sense of the same names in a singly
indirect context. Note that the sense of a name in a singly indirect context
differs from the sense of that name in an ordinary context.

3. PROPOSED SOLUTION

AjdukieWicz's (1960) solution to the paradox of the name relation
revolves around the ambiguity of sentences similar to 4. It is the process
of removing the ambiguity of these sentences that leads to the solution.
In his attempt to find an extensional solution to the paradox of the name
relation, Ajdukiewicz introduces the novel idea of abstraction with
respect to a constant. The notion of abstraction with respect to a variable
is familiar in most formal languages, but not abstraction with respect to a
constant.
Church (1988) has formalized the solution informally explained by

Ajdukiewicz. The idea of a proposition surrogate is one that has arisen
out of this formalization. In this section, Church's formal notation along
with Ajdukiewicz's informal explanation is applied to some examples of
the paradox of the name relation. It is shown how the paradoxical
conclusions are avoided.
Consider McCarthy's example that was discussed previously. Accord-

ing to Ajdukiewicz, sentence 4 is an ambiguous sentence. It has two dif-
ferent meanings. One meaning leads to the paradox, but the other does

85

FIRST-ORDER THEORIES OF INDIVIDUAL CONCEPTS

not. Thus, it should be no surprise that most people would understand
the meaning of sentence 4 that does not lead to the paradox, and not the
other that leads to the paradox. The first meaning of sentence 4 is:

Pat knows
about a particular number,
about the equality relation,
about Mike,
about the function telephone number,
that the telephone number of Mike is equal to
the particular number.

The second meaning is:

Pat knows
about a particular number,
about the equality relation,
about the telephone number of Mike,
that the telephone' number of Mike is equal to
the particular number.

In the second meaning, Pat does not explicitly know about the function
telephone number or Mike, but only that the result of application of the
function telephone number to the argument Mike is some particular
number. It is this meaning of 4 that leads to the paradoxical conclusion
and not the first meaning.
In what follows, both meanings of 4 are formalized according to the

notation introduced by Church (1988). It is then shown how the second
meaning leads to the paradox, whereas the first meaning avoids it.
The first meaning of 4 is formalized under Alt(1) as:

know (pat, (AD)F)GAB.D (2X.F (x,G (B))), t,equal,telephone,mike)) (19)

and under Alt(0) as:

know(pat, ().D)TAGAB (D,AX(F,X,KG,B))),
t,equal,telephone,mike)) (20)

where t is denoting the description operator, not contextually defined,
and telephone and equal are function symbols, mike and pat are primi-
tive constants in the language corresponding to Mike and Pat; D, F, G, B,
and X are bound variables. The first argument of know is a primitive
constant and the second argument is an ordered n-tuple. This ordered
n-tuple is referred to as a proposition surrogate and is the object of belief
of the first argument. The first member of a proposition surrogate must
be of the form AX1AX2 AXn.M where M has as its only free variables
exactly one free occurrence of each of the variables X 1, X2,. . . ,Xn.
The remaining members of the proposition surrogate must be constants

86

ARBAB

Cl,C2,...,Cn that are of the same type as the variables X1,X2,... ,Xn
but not necessarily all different.
The first member of the proposition surrogate gives only the form.

The constants, names, and functions are then abstracted and listed
separately. The original formula can always be obtained from the
proposition surrogate by applying the first member to the rest of the
members. This device is used primarily to distinguish between applica-
tion of a function to its arguments and the resulting value. For example,
5-125 is true, whereas 5 = (A.FAX)F,X), V, 25) is not true. However,
applying the first member of (AFAX)F,X)„1,25) to the other members
will result in (,/, 25); another application yields .125 which is equal to 5.
The second meaning of 4 is formalized under Alt(1) as:

know(pat,()DMAD ()X.F(X,A)),t,equal,telephone(mike))) (21)

and under Alt(0) as:

know (pat, (1D) T)A(D,)LX(F,X,A)),I,equal,telephone (mike))) (22)

Note that in 22 Pat does not know about the function telephone or mike,
whereas 20 has constants corresponding to both mike and the function
telephone listed explicitly within the constant list occurring in the propo-
sition surrogate.
Now, sentence 5 is formalized in the usual way as:

telephone (mike) = telephone (mary). , (23)

It is possible to replace telephone(mike) by telephone(maty) in 22, on
the grounds of 23 and the axioms of equality, thus arriving at

know(pat,()DAF)LND,AX(F,X,A)),t,equal,telephone(mary))) (24)

which is the well-formed formula corresponding to the paradoxical
conclusion 6. No such replacement is possible, however, in 20 on the
grounds that telephone(mike) is not directly identifiable in the list of
constants of the proposition surrogate. Indeed, 20 is the intended and
the understood meaning of sentence 4.
The solution as outlined above does not address the problem with

respect to primitive constants of the language. For example, the two
sentences Pythagoras knows whether the morning star is the evening star
and the morning star is the evening star when formalized according to the
above theory of proposition surrogates will give rise to the valid (but
boring) conclusion Pythagoras knows whether the morning star is the
morning star. For the full treatment and addition of proposition surro-
gates to programming languages the reader is referred to Arbab (1988).

87

FIRST-ORDER THEORIES OF INDIVIDUAL CONCEPTS

4. SUMMARY

Various solutions to the paradox of the name relation are examined.
McCarthy's (1979) solution to the paradox is shown defective by means
of a new example. Frege's (1892) solution to the paradox is also intro-
duced and applied to the examples in this paper. Formalization of Frege's
solution to the paradox, under Alt(0), is still an open problem. Finally,
following Church (1988) and Ajdukiewicz (1960), a partial solution to
the paradox is introduced and applied. For the complete solution see
Arbab (1988). This solution is particularly suited for automatic
representation of sentences that contain words which introduce an
indirect context.

Acknowledgements
The idea of a proposition surrogate was first developed by Church (1988). This
development of proposition surrogates started from a short abstract by Ajdukiewicz
(1960), in which a solution to the paradox of the name relation was only informally
outlined. Ajdukiewicz, however, had outlined in a later paper (1967) an idea that upon
inspection is very close in content to that of proposition surrogates. The problem with
respect to primitive constants was not addressed by Ajdukiewicz until 1967. In this
paper he clearly shows that analysis of sentences containing primitive constants
according to his technique, which is very similar to proposition surrogates, will admit
substitutions of primitive constants for one another. He then argues that if the resulting
conclusions seem to be counter-intuitive it must be that we understand such sentences as
metasentences and not as object language sentences. The present author fails to
understand this particular philosophical view taken by Ajdukiewicz. The above example
is simply another instance of the paradox of the name relation which a proposed
solution should resolve.
The author is grateful to Professors Alonzo Church, Donald Michie and Stott Parker

for their review and comments on this paper. Needless to say, all remaining errors are
attributable solely to the author.

REFERENCES

Ajdukiewicz, K. (1967). Intensional expressions. In Kazimierz Ajdukiewicz. The
scientific world-perspective and other essays 1931-63, (ed. J. Giedymin) pp. 320-47, D.
Reidel Publishing Company.

Ajdukiewicz, K. (1960). A method of eliminating intensional sentences and sentential
formulae. In Atti del XII Congresso Internazional di Filosofia, pp. 17-24.

Arbab, B. (1988). A formal language for representation of and reasoning about indirect
context. PhD thesis, University of California at Los Angeles

Carnap, R. (1956). Meaning and necessity. The University of Chicago Press, 2nd edition.
Church, A. (1946). A formulation of the logic of sense and denotation. The Journal of
Symbolic Logic, 11 No. 1. Abstracts of Papers.

Church, A. (1973). Outline of a revised formulation of the logic of sense and denotation
(Part I) Nous, V11(1), 24-33.

Church, A. (1987). Intensionality and the paradox of the name relation. In Themes from
Kaplan, Stanford Press. The content of this paper was presented as an invited lecture
at a joint symposium of the A.P.S. and the Association for Symbolic Logic in Berkeley,
California, March 1983.

88

ARBAB

Frege, G. (1879). Begriffsschrift, a formal language, modelled upon that of arithmetic,
for pure thought. In From Frege to Godel, (ed. J. van Heijenoort) pp. 1-82, Harvard
University Press, 1977.

Frege, G. (1892). On sense and meaning. In The Philosophy of Language, (ed. A. P.
Martinich) pp. 212-20, Oxford University Press, 1985. Originally published in 1892.

McCarthy, J. (1979). First order theories of individual concepts and propositions. In
Machine Intelligence 9, (eds J. Hayes, D. Michie, and L. I. Mikulich) pp. 120-47, Ellis
Horwood.

Russell, B. (1905). On denoting. Mind, 14, pp. 479-93.

89

INDUCTIVE FORMATION OF
PROGRAMS AND DESCRIPTIONS

7

Inverting the Resolution Principle

S. H. Muggleton
The Turing Institute,
Glasgow, UK

Abstract

In this paper we describe the current status of an ongoing research
project investigating a novel form of Machine Learning in which the
learner's vocabulary is enriched by the machine suggesting useful new
descriptive terms for the user to accept or reject. An algorithm called
Duce has been shown to be effective along these lines in developing and
extending propositional theories within a chess endgame domain and a
diagnostic domain of neuro-psychology. By showing that Duce's trans-
formational operators are based on reversing the steps of a resolution

, proof we show that Duce's learning method is sufficient for learning any
propositional theory.

1. INTRODUCTION

Duce [4] is an algorithm which produces hierarchical concept descrip-
tions from large numbers of examples. Whereas the ID [7] and AQ [3]
families of inductive algorithms require all necessary attributes to be
provided before learning can take place, Duce develops new attributes
by incrementally building them from existing ones, testing each against
the user for comprehensibility. Duce uses a set of transformations of
propositional Horn clauses which successively compress the example
material on the basis of generalizations and the addition of new terms. In
the following descriptions of three of the six Duce operators, lower-case
Greek letters stand for conjunctions of propositional symbols.

1. Intra-construction This is the distributive law of Boolean equations.
We take a set of rules such as

hi afl
hi 4- ay

and replace them with the rules

hi 4- ah3
h3— fl
h34- y

93

INVERTING THE RESOLUTION PRINCIPLE

The user either names the new concept h3 or rejects it.

2. Absorption This operator is from Sammut and Banerji [10]. Given a
set of rules, the body of one of which is completely contained within
the bodies of the others, such as

hi 4- af3
h24- a

one can hypothesize

h1 4- h2fi
h24- a

The user can either accept this generalization or reject it.

3. Identification This operator has preconditions which are stronger
than those of intra-construction. A set of rules which all have the
same head, the body of at least one of which contains exactly one
symbol not found within the other rules, such as

hl ah2

can be replaced by

ah2
h24-- p

Again the user can either accept this generalization or reject it.

Duce uses the compaction of the rulebase produced by each of the six
operators to guide the search for the next operator to apply. In [4] we
give the set of characteristic formulas, one for each operator, which
predict the exact symbol reduction produced by each operator, the
number of symbols in a rule being equal to the rule-body length plus one
for the rule-head. Since Duce applies only operators which give a
positive symbol reduction it can easily be shown that the algorithm
terminates after a finite number of operator applications.

2. APPLICATION DOMAINS

2.1. KPa7KR application

The first large-scale test of Duce's capabilities [4], was an attempt to
reconstruct automatically Shapiro and Kopec's expert system [11] for
deciding whether positions within the endgame of King-and-Pawn-on-
a7 v. King-and-Rook were won for white or not. A set of 3196 examples
was used, and Duce's questions were answered by the chess experts Ivan

94

MUGGLETON

Bratko and Tim Niblett. The result Was a comprehensible restructuring
of the domain, topologically similar to Shapiro and Kopec's original
structure, though an order of magnitude more bulky.

2.2 Neuro-psychology application

A second, and previously undescribed structuring experiment was
carried out by the author using Duce at Interact Corporation, Canada. In
this Duce was used to construct a problem decomposition for deciding
on dysfunction of the left parietal brain area of children with learning
disabilities. The input to the algorithm consisted of 227 diagnosed cases.
Each case contained the results of a battery of approximately 100
binary-valued clinical tests. Each case was marked with a diagnosis of
normal/abnormal left parietal lobe by the resident clinical neuro-
psychologist, Dr Russell. Using these cases Duce carried out an inter-
active session in which Russell was asked to answer a total of 53
questions. During and subsequent to the construction of the rulebase, a
set of 48 independent cases was used to test the performance of the new
rule-set. Since the cases and generated rules were inherently noisy, a
majority-vote mechanism was used for rule evaluation. After all 53

, questions had been answered, 43 of the 48 test cases agreed with
Russell's diagnosis, in other words, 90 per cent agreement. In contrast,
an existing expert system developed by Russell had only a 63 per cent
agreement rate with Russell's diagnoses over the same test data. While
Duce's structured rulebase took 2-3 person-days to build and verify, the
equivalent part of the hand-built expert system is conservatively
estimated to have taken 2-3 person-months to generate, improve, and
verify.
In parallel with the supervised construction of the Duce rulebase,

Duce was run on the same cases in unsupervised mode. In this mode, all
generalization questions were answered affirmatively and all new
concepts were arbitrarily named. Performance in unsupervised mode
stabilized after 27 questions to a level of 25 per cent agreement with
Russell's diagnoses of the same test cases.
Unlike the endgame experiment in which an exhaustive example set

was used, the neuro-psychological example set was relatively sparse. As
a consequence, whereas no rejections were necessary in the case of the
chess experiment, an average of 10 rejections were required per accept-
ance with the neuro-psychological data. This seems to indicate the need
for expert supervision of Duce where sparse data is involved, and
explains the dramatic difference in verification results between the
supervised and unsupervised data.
The structure of the rulebase created by Russell working with Duce is

shown below. This hierarchical structure contains groups of rules associ-
ated with each node of the network. The sub-types implied by this

95

INVERTING THE RESOLUTION PRINCIPLE

hierarchy were, according to Russell, 'clinically significant', and relate
directly to neuro-psychological sub-types based on Wide-range-

achievement-test (wRAT) results in arithmetic, reading, and spelling.

LPAb_GoodV
LPAb_PoorAl
LPAb_PoorA

LPAb_B adAl
LPAb_B adAl _RS_AST
LPAb_BadA
LPAb_BadA_PoorS
LPAb_BdA_PrS_BadAST_GdSSPT

LPAb_BadA_BadAST
LPAb BadA_AST_S1
LPAb_BadA_AST_S
LPAb_B ad A _A ST_S l_V

3. THEORY

Duce has shown a considerable amount of sucess within the application
domains described in the previous section. However, there are a number

of questions concerning the methodology employed within Duce which
are of interest both from a theoretical and a practical viewpoint.

1. Completeness of operators Six operators are used by Duce to carry
out generalizations and introduce new terms. How complete are
these? Are they sufficient to learn any arbitrary set of propositional
clauses given enough examples? (See Section 3.2.)

2. Search Duce presently searches through the set of conjunctions of
predicate symbols to find which operator to apply next. For this
reason Duce can be myopic in its choice of new terms. The discrep-
ancy in complexity between Duce's solution and human solutions
(see Section 2.1) seems to indicate that this problem can be quite

severe. New methods of searching for operators are required. (See
Section 3.3.)

3. Extensions to first-order representation Bain [2] has described a failed
attempt to use Duce to learn a simple chess definition of position
legality from only positional attributes. Although the definition can
be described simply in first-order predicate calculus the cumber-
someness of Bain's description is not eased by adding extra proposi-
tional attributes. This gives incentive to an investigation into extend-
ing the Duce approach to deal with first-order predicate calculus (see

[5]).

96

MUGGLETON

3.1 Inverting resolution

Although it is apparent to many researchers in Machine Learning that
there is a strong relationship between deductive theorem-proving mech-
anisms and inductive inference, this idea has rarely been investigated to
any greater depth than to notice that the ideas of logical subsumption or
logical implication are central to both. One exception to this is Plotkin
[6] who investigated the idea that 'just as unification was fundamental to
deduction, so might a converse be of use in induction.'
From this idea Plotkin went on to develop the concept of least general

generalization, or anti-unification of literals and clauses.
Unification is a basic idea within Robinson's [9] theory of resolution.

Another important concept within this theory is that of the resolution
tautology, or rule of inference. As Plotkin [6] notes, 'It is interesting that
... the similarity between induction and deduction breaks down. .. [with
anti-unification]. What is useful is not a concept of unification of two
clauses, but the deduction principle called resolution.'
We now show that the analogy between deduction and induction can

be extended fruitfully, and that in fact the operators used by Duce are
merely the inverse of resolution. In a later section, this fact will lead us to
a proof of the sufficiency of the Duce operators.
In this section we limit our discussion of resolution to binary resolu-

tion of propositional Horn clauses. However, in [5] we extend this
analysis to deal with first-order representations. Let C1 and C2 be the
two clauses

= (hi ah2)

C2= (h2—f3)

We write the resolvent or resolved product of C1 and C2 as

C = C2 = (h, 4- 0)

We now define the resolved quotient as follows

= C/C2

Alternatively, the author calls CI the identificant of C and C2. Similarly

C2 = C/C1

Again we call C2 the absorbant of C and C1.
It is now straightforward to define the absorption and identification

operators described informally in Section 1.

Definition 1 Given a propositional Horn clause program PQ{C, CI },
the absorption operator, Abs, transforms P to P' = (P— {C})U {C /C1}.

Definition 2 Given a propositional Horn clause program P.Q{C, C2}, the
identification operator, Ident, transforms P to P' = (P — {C})U {C /C2}.

97

INVERTING THE RESOLUTION PRINCIPLE

We can also define the inverse of both of these operators uniquely.

Definition 3 Given a propositional Horn clause program PD_ CI ,C21,
the inverse absorption operator, Abs-', transforms P to P'=
(P — IC21) U ICi • C21.

Definition 4 Given a propositional Horn clause program PQ , C21,
the inverse identification operator, Ident-1, transforms P to P'=
(P — ICJ) U {Cl• C2}.

We now give a formal definition of the intra-construction operator
of Section 1 and its inverse. Let A = (h3 yh4), BB = {B1, ,
B„}={(ha — (51), , (ha— On)), CC {C1, Cn1= I(A• B1),...,
(A• Bn)} = {(h3 yoi), , (h3 yon)}.

Definition 5 Given a propositional Horn clause program P_?_. CC,
the intra-construction operator, Intra, transforms P to P'=
(P— CC)U{A} U BB.

Definition 6 Given a propositional Horn clause program PQ ({A} U BB),
the inverse intra-construction operator, Intra-1, transforms P to P'=
(P— ({A} U CC)) U BB.

Lemma 1 If the program transformation P P' is carried out by either
Abs', Ident I, or Intra-1 then P subsumes P'.

Proof Follows from the fact that all these operators replace more
general clauses with more specific ones. 0

The reader may wonder how A and BB are constructed in the defi-
nition of Intra. As a special case of Plotkin's [6] least general generaliz-
ation (lgg) of clauses, we say that y is the lgg of the bodies of clauses
within CC (bodies(CC)) if and only if y is the common intersection of
propositional symbols of bodies(CC). Given y and a new predicate
symbol h3, it is straightforward to construct A and BB. It is only through
reversal of multiple resolution steps that the introduction of new predi-
cate symbols becomes possible.

3.2. Completeness of Duce operators

In order to ensure that the success of the Duce applications described in
Section 2 was not due to some peculiar property of the domains involved
we need to show that the operators used by Duce are sufficient to learn
any arbitrary set of propositional clauses. Clearly we need to specify
some restriction on the allowable forms of examples used, otherwise
Duce could merely be presented with any desired solution as its input.
Let P be an arbitrary target propositional Horn clause program. The
vocabulary used in P (vocab(P)) is then simply the set of propositional
symbols in P. The primitive vocabulary of P (prim(P)) is the set of

98

MUGGLETON

symbols not defined in terms of other predicate symbols. Thus
prim(P)= vocab(P)— heads(P), where heads(P) is the set of clause
heads of clauses within P. Now let E be a set of example propositions
from which P can be learned by Duce. A reasonable restriction on
allowable forms of examples used would seem to be that

(1) P subsumes E, i.e. any statement which can be derived from E can
also be derived from P;

(2) each clause body in bodies(E) is composed only of predicate
symbols from prim (P);

(3) the vocabulary of P is an extension of that of E, i.e.
vocab(P)— vocab(E)01}.

If these conditions are met then we will say that E is a legitimate
example set of P. First we define the abstract algorithm Duce (Abs,htira)
which is a non-deterministic version of the Duce algorithm limited to
using only the Abs and Intra operators. In the following an inverse
derivation E— P1 — P„ is a mixed sequence of absorption and intra-
construction transformations of the example set E into the propositional
Horn clause program P = P.

Definition 7 The algorithm Duce(Absin„.a) (E) returns a set of possible
Horn clause programs H = {P:P is an inverse derivation of E}.

We can see H as being the hypothesis space of an algorithm which
returns a single hypothesis. Angluin [1] introduced the notion of a
characteristic sample set of examples for language L as being a set of
examples which are. sufficient to allow the inference of L. Here we use
the term somewhat loosely to define a set of examples which induces a
hypothesis space containing a given logic program P. If we can show that
for any arbitrary propositional Horn clause program P we can generate
a characteristic sample set, it follows that there is a sample set from
which any P can be induced. This in turn would show that given a large
enough set of examples, which in the limit must contain a characteristic
sample, the Duce operators are sufficient to learn any propositional
Horn clause program.

Definition 8 Given a propositional Horn clause logic program P we say
that E is a characteristic sample of P for algorithm Duce(Ahs,Intra) if and
only if E is a legitimate example set of P and P e Duce (Abs.hom).

Before showing how to construct a finite characteristic sample for any
logic program we will introduce the auxiliary notion of an isolated
reference.

Definition 9 The clause (h ap)€ P is said to reference predicate
symbol p.

99

INVERTING THE RESOLUTION PRINCIPLE

Definition 10 The clause CE P contains an isolated reference to
predicate symbol p if and only if C is the only clause within P which
references p.

Remark 1 If Abs" is applied to P CI ,C21 to produce P' = P —
{ C21 U { C C2 } then the operator Abs" reduces the number of clauses
which reference predicate symbol p E vocab (P) by one.

Remark 2 If Intra' is applied to PP_ (AU BB) to produce P' = P—
({A}U BB) U CC, where A= (h— op) contains an isolated reference to
p, BB ={(p 4- . , (p 13„)} is the set of all clauses containing the
predicate symbol p in their heads and CC = {(h— 01), . . . , On)}
then the program P' does not contain the predicate symbol p.

The following algorithm Char(Absintra) can be used to generate a
characteristic sample of a given propositional Horn clause logic program
P.

algorithm Char(Absjnira)(P)
let i= 0, Po = P
until Pi is a legitimate example set of P do

if there is an A in Pi such that A contains an isolated reference
top
Pi +1 is the result of applying Intra- to remove p in Pi

else
Pi,1 is the result of applying Abs- ' to remove reference
A in Pi

let i = i + 1
done
let f = i
E is Pf
return(E)

end Char

Now we must show that this algorithm will generate a characteristic
sample for any propositional Horn clause logic program.

Theorem 1 Char (AbsInfra)•P -. () returns a characteristic sample for any
propositional Horn clause logic program P

Proof Let E= Char (Absintra)(P)• According to definition 8 E is a
characteristic sample of P for Duce (Abs Intra) if and only if E is legitimate
and PE Duce- - - (Abs,Intra)(E)• Let us assume that E is not a characteristic
sample of P.
We will first look at the case in which the until loop in Char(Abs,Intra)

terminates. According to the loop termination condition, Pf must be a
legitimate example set of P. Since each step i in the derivation P-,

100

MUGGLETON

Pf was carried out by either Abs- I or Intra" it follows that the
sequence of transformations (E = pf)— . . . P is an inverse derivation
of P from E. It follows from definition 7 that P E Duce (Abs,Intra)(E), and
thus E is a characteristic sample of P. We must therefore assume that the
until loop does not terminate.
Let p be some predicate symbol in vocab (P) — prim (P). By definition

there must be clauses which reference p in P. These references will be
reduced one by one by the else statement (Remark 1), with the last
reference being removed by the if statement, together with all remaining
occurrences of p in P (Remark 2). Referenced predicate symbols will be
removed one by one until only unreferenced predicate symbols remain
for some P1. From repeated application of Lemma 1, P subsumes Pi
Moreover the vocabulary of P1 will have been successively reduced from
that of P by applications of Intro" (Remark 2). Thus by definition /91 is
legitimate and the until loop will terminate with f = j. This contradicts
the assumption and completes the proof. 0

We now investigate the size of the characteristic sample set for a given
propositional Horn clause logic program.

Theorem 2 Let E = Char (Absanira)(P) and Ps be the set of referenced
predicate symbols in P. The size of the characteristic sample set

lEi = IPI IPsi.

Proof From definition 2 Abs" applies the transformation P' = P —
C 2U C, and therefore I P'l = IPI. From definition 4, Intro" applies the
transformation P' = (BB U {A}) U CC, where I BBI= ICC'. It follows that
for Intra", IP'I= 'Pi — 1. In the proof of Lemma 1 we have shown that
referenced predicate symbols are removed one by one using Intra- I. All
other transformations employ Abs- I. Since there must therefore be I Psi
applications jof /tura- I it follows that I El=1P1-1/34. 0

Thus not only have we shown that the operators Abs and Intro are
sufficient to learn any arbitrary propositional program but also, sur-
prisingly, fewer examples are needed to induce a propositional program
than there are clauses in that program. This is counter-intuitive to the
normal belief in inductive knowledge engineering, in which we expect to
use a large number of examples to induce a small number of rules.

3.3. Search: Duce macro-operators

Duce presently searches through the set of conjunctions of predicate
symbols to find which operator to apply next. For this reason Duce can
be myopic in its choice of new terms. The discrepancy in complexity
between Duce's solution and human solutions (see Section 2.1) seems to
indicate that this problem can be quite severe. However, by considering
the characteristic set generating algorithm of Section 3.2 as being an

101

INVERTING THE RESOLUTION PRINCIPLE

inverted strategy for propositional program construction, we have

discovered a simple and effective method of improving Duce's present

search mechanism. The argument is as follows. The algorithm

Char(Absinfra) removes intermediate concepts (predicate symbols) o
ne at

a time. For every predicate symbol p removed, Char(Absin„a) applies

Abs-1 repeatedly to remove all but the last reference to p. p is finally

removed from the vocabulary by application of Intra -1. In reverse this

strategy becomes

(1) introduce p using Intra

(2) apply Abs to all clauses with head p.

This can be viewed as a form of macro-operator. Attempts are

presently being made to implement this and other macro-operators

within Duce. One severe impediment to the approach has been that

whereas the symbol reduction effect of the old Duce operators can be

efficiently and accurately computed using the characteristic equations of

[4], no efficient method of computing the exact effect of macro-

operators has been found outside application and measurement. It is

estimated that application and measurement would slow the execution of

the Duce algorithm by a factor of 1000 on applications the size of the

KPa7KR experiment. However, various methods of approximating the

evaluation have been tried, the most effective of which led to a 20 per

cent compaction of the KPa7KR result [4].

4. DISCUSSION

Although much progress has been made in applying Duce to various

problem domains, the present aim of our research is to extend Duce's

capabilities. For these purposes it has been necessary to work out the

theory underlying the Duce approach in more detail. In so doing we have

discovered that Duce is a form of inverse resolution theorem prover.

Many useful insights into possible improvements and extensions of the

Duce algorithm have resulted from this, some of which are described in

Section 3.
The two most interesting adaptions of Duce seem to lie in the

directions of changing the underlying knowledge representation to first-

order predicate calculus and dealing with noisy data. Although other

authors have looked at related problems [8, 12, 10], all such attempts

have dealt with learning single predicates, none with the more difficult

problem of automatic vocabulary extension.

Acknowledgements

This paper describes work which was funded in part by the British Government's Alvey

Logic Database Demonstrator. Research facilities were provided by the Turing Institute,

102

MUGGLETON

Glasgow, UK, Interact R&D Corporation, Victoria, BC, Canada and the US Army
Office of Research in the Behavioral and Social Sciences through their Science
Coordination Office in London.

REFERENCES

1. Angluin, D. (1982). Inference of reversible languages. JACM, 29, pp. 741-65.
2. Bain, M. (1987). Specification of attributes for computer induction. TIRM, The

Turing Institute, Glasgow.
3. Michalski, R. and Larson, J. (1978). Selection of most representative training

examples and incremental generation of VU 1 hypotheses: the underlying
methodology and the description of programs ESEL and AQII. UIUCDCS-R
78-867, Computer Science Department, Univ. of Illinois at Urbana-Champaign.

4. Muggleton, S. H. (1987). Duce, an oracle based approach to constructive induction.
In LICAI-87, pp. 287-92, Kaufmann.

5. Muggleton, S. H. (1987). Towards constructive induction in first-order predicate
calculus. TIRM, The Turing Institute, Glasgow.

6. Plotkin, G. D. (1971). Automatic methods of inductive inference. PhD thesis,
Edinburgh University.

7. Quinlan, J. R. (1979). Discovering rules by induction from large collections of
examples. In Introductory Readings in Expert Systems (ed. D. Michie), pp. 33-46,
Gordon and Breach, London.

8. Quinlan, J. R. (1986). Learning from noisy data. In Machine Learning Volume 2
(eds R. Michalski, J. Carbonnel, and T. Mitchell), Kaufmann, Palo Alto, CA.

9. Robinson, J. A. (1965). A machine-oriented logic based on the resolution principle.
JACM, 12 No. 1,23-41.

10. Sammut, C. and Banerji, R. B. (1986). Learning concepts by asking questions. In
Machine Learning: An Artificial Intelligence Approach (eds R. Michalski, J.
Carbonnel, and T. Mitchell), 2, pp. 167-92, Kaufmann, Los Altos, CA.

11. Shapiro, A. D. (1987). Structured induction in expert systems. Turing Institute Press
in association with Addison-Wesley.

12. Shapiro, E. Y. (1982). Algorithmic program debugging. PhD thesis, Yale University.

103

_

8

Non-monotonic Learning

M. Bain and S. H. Muggleton
The Turing Institute,
Glasgow, UK

Abstract

This paper addresses methods of specializing first-order theories within
the context of incremental learning systems. We demonstrate the short-
comings of existing first-order incremental learning systems with regard
to their specialization mechanisms. We prove that these shortcomings
are fundamental to the use of classical logic. In particular, minimal
'correcting' specializations are not always obtainable within this frame-
work. We propose instead the adoption of a specialization scheme based
on an existing non-monotonic logic formalism. This approach over-
comes the problems that arise with incremental learning systems which
employ classical logic. As a side-effect of the formal proofs developed
for this paper we define a function called 'deny' which turns out to be an
improvement on an existing explanation-based-generalization (EBG)
algorithm. PROLOG code and a description of the relationship between
'deny' and the previous EBG algorithm are described in an appendix.

1. INTRODUCTION

1.1. Motivation

Generalization is not everything in learning. New experience can often
require the specialization of over-general beliefs. For example imagine
that you believed that all birds fly. We might write this as

Flies(x)■- Bird(x)t (1)

If you were told that although an emu is a bird it cannot fly you would
have to specialize (1) to deal with this exception. In this paper we discuss
various ways in which this could be done. In the following we will assume
that an incremental learning algorithm receives new examples one at a
time, its belief set being revised after each example. The belief set is
generalized when it does not cover a new example. On the other hand it
is specialized when contradicted by a new example. Most work in
machine learning is based on the related notions of generalization

trhe logic notation used in this paper is similar to that of Chang and Lee [1].

105

NON-MONOTONIC LEARNING

and specialization. However, most treatment of the topic of specializ-
ation has been within the context of non-incremental learning algorithms
such as ID3 [14], AQ 11 [6], INDUCE [7], and Version Space algorithms [8].
In this paper we investigate the less explored topic of incremental
specialization. Clearly an incremental learning algorithm as described
above changes the coverage of its beliefs non-monotonically, hence the
title of this paper. However, in Section 1.3 we show that the developers
of logic-based machine-learning algorithms to date have avoided non-
monotonic logic representations. This leads to various problems. In
Section 2 we prove that it is not possible in general to preserve correct
information when incrementally specializing within a classical logic
framework. In Section 3 we demonstrate that this impasse can be easily
avoided by learning algorithms that employ a non-monotonic knowledge
representation.
Muggleton and Buntine [11] have described an algorithm called CIGOL

which learns unrestricted first-order Horn clause theories on the basis of
unit clause examples presented one at a time. ciDoL, as described in [11]
is not incremental in the sense of the description above. Although it
generalizes from positive examples it does not specialize when it
encounters negative examples which contradict its theory. In practice
this has led to difficulties. As reported in [10], by over-generalizing
CIGOL managed to outstrip the performances of both humans and
propositional learning algorithms when incrementally learning a chess
concept from randomly selected examples. However, having over-
generalized and reached a performance level of around 90 per cent,
cicoi, was not able to produce 100 per cent performance since it could
not specialize the concept definition. In this paper we lay the theoretical
foundations for incremental specialization techniques and describe an
implementation within a new version of cicoL.

1.2. Generalization and specialization

Niblett [12] has shown that the concept of generality can be expressed
within the framework of logic. Let P and Q be two well-formed
formulas. P is more general than Q if and only if PI- Q. We might also say
equivalently that P is a generalization of Q or Q is a specialization of P.
Note that since P and Q can be any well-formed formulas they might be
atomic formulas, clauses, or conjunctions of clauses.

1.3. Previous incremental specialization techniques

Shapiro [17] describes an incremental Program Debugging System (pDs)
which recognizes three different types of bug within Horn clause logic
programs. Given a Horn clause program P, a ground unit goal G, and an
intended interpretation M (set of ground atoms) of P, P is said to be
incomplete when GEM and P G, incorrect when G4 M and PI-G and

106

BAIN AND MUGGLETON

non-terminating when GEM but G leads to a non-terminating SLD-
resolution proof from P. For the purposes of this paper we are interested
in the case in which PDS finds P to be incorrect. In the general case, when
PDS finds P to be incorrect with respect to G it searches for a clause C
which covers G and removes C from P. Thus let P' be the resulting
program where P= P' A C. Note that clause removal is a specialization
technique since P' A CEP'. However, removing C from P is a somewhat
drastic method of specializing a logic program since P' may now become
incomplete with respect to a goal G' in M previously covered by C. In
the 'bird' example of Section 1.1 let M be a superset of
{Flies (Eagle),Bird(Eagle),Bird(Emu)}, P = {(Flies(x)- Bird(x)),(Bird
(Eagle) ■-),(Bird(Emu))1, G = Flies(Emu) and GM. As G4 M and
PFG, PDS would delete the clause Flies (x) Bird(x) leaving
P' = {(Bird(Eagle)),(Bird(Emu) -)1. Since P' is incomplete with
respect to G'= Flies(Eagle), PDS would generalize P' to P"=
{(Flies (Eagle) -),(Bird(Eagle)),(Bird(Emu) 4-)1. However, whereas
the goal Flies(Sparrow) could be proved from PU{Bird(Sparrow)} it
cannot be proved from P"U{Bird(Sparrow)}. In this paper we will be
investigating less drastic specialization techniques than clause removal.
Wrobel [18] describes a program called MODELER which incrementally

learns theories in a clausal logic formalism without function symbols.
MODELER'S knowledge revision module applies a heuristic approach to
deal with Shapiro's incorrectness problem. MODELER saves exceptions to
each rule in the form of a support set. Having found a sufficiently large
set of exceptions MODELER introduces a new unary predicate to describe
the exceptions. The clauses are then reformulated in terms of the new
predicate. The approach used in MODELER has some similarities to that
described in Section 3 of this paper. However, since MODELER, like
PDS, does not use a non-monotonic logic representation it also tends to
over-specialize when presented with counter-examples. In the bird
example, with P, M, and G the same as above MODELER would pro-
duce ?"= {(Flies(x)- Bird(x) A Concept' (x)), (Concept] (Eagle) -),
(-Concept] (Emu) -),(Bird(Eagle)),(Bird(Emu) 4-)}. Again, whereas
Flies(Sparrow) could be proved from PU {Bird(Sparrow)} it cannot be
proved from P" U {Bird(Sparrow)}.
The approaches taken in these two machine-learning programs are

typical of attempts to date to design algorithms which produce incre-
mental specialization. However, if either of these techniques were
applied to cicoL's chess problem (Section 1.1) the performance would
drop drastically from a strong performance of around 90 per cent
correct to a weak, almost random performance of around 67 per cent
correct. The reason is that both PDS and MODELER over-specialize. But
how could one avoid over-specializing P? In Section 2 we define and
investigate the properties of the most-general-specialization P' of a first-

107

NON-MONOTONIC LEARNING

order clausal theory P such that PI-G and P 171 G. Although at first this
seems a promising approach, we demonstrate that P' can contain an
indefinitely large set of clauses. In Section 3 we show that this problem
can be avoided by using a non-monotonic formalism. As an introduction
to non-monotonic formalisms, in Section 1.4 we briefly describe some of
the background. This approach leads to new problems in defining the
notions of generality and redundancy within this formalism.

1.4. Non-monotonic formalisms

One of the most common approaches to non-monotonic reasoning is
based on the 'Closed World Assumption' (cwA) inference rule. Accord-
ing to the CWA, if a ground atom A is not a logical consequence of a
theory then infer A [5]. The CWA can be implemented in two different
ways. First, by adding additional completion axioms to the theory and
applying standard theorem proving techniques. This approach is
exemplified by 'predicate completion' [5] and 'circumscription' [9].
Second, by employing 'Negation by Failure' (NF) where a modified
theorem prover infers A whenever the attempt to prove a ground atom
A finitely fails. The second approach is used within the logic program-
ming language PROLOG for which NF has been shown to be equivalent to
'predicate completion' [5].

2. MOST-GENERAL-CORRECT-SPECIALIZATION (mGcs)

In this section we define the most-general-correct-specialization (mGcs)
of an incorrect clausal theory and prove various theorems leading to a
resolution-based method for constructing an mGcs. The lengthy proof of
Theorem 7 from this section has been placed in Appendix A to improve
readability. In the course of proving Theorem 7 we define a function
called 'deny' which turns out to be an improvement on the Kedar-
Cabelli and McCarty [3] explanation-based-generalization algorithm.
PROLOG code and a description of the relationship between 'deny' and
the algorithm described in [3] is given in Appendix B. First we define the
correctness of first-order formulas in a weaker way than Shapiro's
definition (Section 1.3). Throughout the following definitions and
theorems we use the term 'intended interpretation' to mean the abstract
model of an unknown formula. In any implementation we would expect
to know the truth only of some ground atoms from the intended interpre-
tation of a formula.

Definition 1 (Correctness) Let F be a well-formed first-order formula
and M be the intended interpretation of F. We say that F is correct with
respect to M, or simply F is correct, whenever M is a model of E Fis said
to be incorrect otherwise.

108

BAIN AND MUGGLETON

An implementation of this definition would allow for correction of a
formula with respect to known facts.

Lemma 2 (Correct-conjunction) Let F be the conjunction of well-
formed formulas (F1 A ... A Fn) and M be the intended interpretation of
F is correct with respect to M if and only if each F, is correct with

respect to M.
Proof Follows trivially from the fact that M is a model of (Fi A A Fn)
if and only if M is a model of each F,.

Definition 3 (Correct-specialization) Let T and T' be sets of first-order
clauses and M be the intended interpretation of T T' is said to be a
correct-specialization of T if and only if T' is correct with respect to M
and TET'

Definition 4 (MGcs) Let Tand T' be sets of first-order clauses and M be
the intended interpretation of T such that T is incorrect with respect to
M and T' is a correct-specialization of T. The set of clauses T' is said to
be the most-general-correct-specialization of T if and only if T'F T" for
every clause set T" which is a correct-specialization of T

This definition assumes the existence of a unique mccs for all clausal
theories. The proof of Theorem 11 provides a resolution-based method
for constructing such an mccs, which guarantees its existence. Before
stating this theorem we need to prove some intermediate results.

Lemma 5 (Subsumption by refutation) Let A and B be two well-formed
first-order formulas. AFB if and only if -0.
Proof (AFB) (AI-73 —13) (AHD B) (A A BED) by the Deduction
Theorem. QED.

In the following we assume familiarity with Robinson's [16] results on
resolution theorem proving. Robinson defines R"(T), for a set of clauses
T, as follows

R°(T) = T
Rn(T)= R(T)UIC':CoC2e Rn-i (T),

Cis the resolvent of C1 and C21

In addition we will define the resolution closure of a set of clauses as
follows.

Definition 6 (Resolution closure) Let T be a set of clauses. The resolu-
tion closure of T, R*(T) is (R°(T) U R I (T) ..).

The resolution closure of T does not contain all of the clauses entailed
by T The following theorem describes the relationship between the
clauses entailed by T and the clauses within the resolution closure of T

109

NON-MONOTONIC LEARNING

Theorem 7 (Clause entailment using resolution) Let T be a set of clauses
and C be a non-tautological clause. TI-C if and only if there exists Din
R*(T) and substitution 0 such that Do _C C.
Proof See Appendix A.

Lemma 8 (Themy entailment) For any two sets of clauses T and T',
TI-T' if and only if TI- C for each clause Cm T'.
Proof Let T' be represented by the conjunction (C1 A ... A Ca).

According to Lemma 5, (TI-T') (TA T' (TA (Ci A ... A C)ED)
(TA (CI V ... V Ca)FEI) ((T A CI) V ... V (TA C„)1- 0) (2). But

((TA Ci)E-0) (TI-C,) by Lemma 5. Thus (2) is true if and only if TFC
for each clause Cm T'. QED.

Lemma 9 (Theory entailment using resolution) Let T and T' be two sets
of clauses. T FT if and only if for every clause Cin T' there exists a clause
Din R*(T) and a substitution 0 such that DOg C.
Proof Follows trivially from Lemma 8 and Theorem 7.

The following definition is similar to Plotkin's [13] definition of 0-
subsumption and is used in the statement of the main theorem, Theorem
11.

Definition 10 (0-subsumption) We say that clause A 0-subsumes clause
B or A QB if and only if there exists a substitution 0 such that A0g B.
Similarly, we write AB when A QB and

Theorem 11 (Resolution-based mccs construction) Let T be a set of
clauses and M be the intended interpretation of T Let Q =IC:CE R*(T)
and C correct w.r.t. MI be the correct part of R*(T) and S = IE:E is a
clause which is correct w.r.t. Mand there exists DE R*(T)— Q and D
and for every E, mE only if E' incorrect w.r.t. MI be a specializ-
ation of the incorrect part of R*(T). Q U S is the MGCS of T
Proof From Definition 4, Q U S is the mocs of T if and only if Q U S is a
correct-specialization of Tand Q U S Q' for every clause set Q' which is
a correct-specialization of T From Definition 3, QU S is a correct-
specialization of T if and only if QU S is correct with respect to Al and
TFQ U S. Using Lemma 2, Q US is correct with respect to M by con-
struction since each clause in Q U S is correct with respect to M. Also,
using Theorem 8, TI- Q U S since T entails each clause in Q U S. Thus
Q U S is a correct-specialization of T.
We must now prove that QU SI-Q' for every clause set Q' which is a

correct-specialization of T Assume that there exists Q' which is a
correct-specialization of T and Q U S bl Q'. Thus, applying Lemma 9,
it is not the case that for every clause F, F is in Q' only if there exists a
clause G such that G is in R*(Q US) and GF. That is to say that there
exists a clause such that F is in Q' and for every clause G, G is in

110

BAIN AND MUGGLETON

R*(Q US) only if G F. But since Q' is a correct specialization of T,
TI-Q'. Thus, by applying Lemma 9 either there is a clause H in Q such
that H F or there is a clause / in (R*(T) — Q) such that 1F. However,
since Q R*(Q US) the first alternative contradicts the assumption
letting G = H. Therefore we must assume the second alternative, that
IF. However, from the definition of S it can easily be shown that for
every correct clause Jfor which there is a clause Din R*(T)— Q there is a
clause E in S such that E J. Thus either F is incorrect with respect to M,
which it is not since Q' is correct w.r.t. M, or there is an E in Sand E F.
Letting G = E this contradicts the assumption and completes the proof.
QED.
Theorem 11 would seem to provide the basis for an algorithm which

could enumerate the elements of the MGCS of an incorrect theory T
However, this does lead to some difficulties, as the following example
shows.

Example 12 We continue the 'bird' example of Section 1.3. Let T be the
set • of clauses ((Flies (x) •- Bird(x)), (Bird(Eagle)—), (Bird(Emu)—)1
and the true ground atoms in M, the intended interpretation of T, be a
superset of {Flies(Eagle), Bird(Eagle), Bird(Emu)}, where Flies(Emu)
is not true in M. T is incorrect with respect to M since the clause
(Flies(x)•- Bird(x)) is incorrect for x = Emu. Constructing the sets
in Theorem 11 we get Q = {(Bird (Eagle) •-), (Bird (Emu) —),
(Flies(Eagle)—} and SQ{Fhes(Eagle)— Bird (Eagle), (Flies(x)•-
Bird(x) A—Bird (Eagle)}. Note that both the clauses shown to be in
S are redundant in Q U S since they are entailed by Q. However, if we
imagine that Flightless(x) is true in M for all those x which cannot
fly and false for all those that can fly then the clause
(Flies(x)*- Bird(x) A —Flightless (x)) is an element of S. But if we assume
that M may contain the predicate 'Flightless' then it could contain an
indefinitely large number of predicates which could be used in combina-
tion to produce an indefinitely large number of additional clauses within
S.

In the next section we show that by assuming the existence of
additional predicates such as 'Flightless' and by using a non-monotonic
representation we can solve the problem of over-specialization of
incorrect theories.

3. CLOSED WORLD SPECIALIZATION

As we stated in Section 1.4 the logic programming language PROLOG uses
'negation by failure'. In classical logic the ground literal A is provable
from theory T if and only if TFA . In PROLOG the ground goal notp (A) is
provable from T if and only if A is an atom and TVA. In this section we

111

NON-MONOTONIC LEARNING

will represent clauses in the notation of Edinburgh PROLOG [2]. For
example the clause (P (x)+- Q(x) A R(x)) is written in PROLOG as

p(X) q(X), r(X).

But note that the PROLOG clause

p(X) q(X), notp(r(X)).

states that p (X) is provable if q(X) is provable and r(X) is not provable.
The literal to the left of the ̀ :—' sign is called the 'head' of the clause,
while the set of literals to the right of the ̀:—' sign is called the body of the
clause. PROLOG proofs are carried out using sLDNF-resolution [5]. The
following is an algorithm for our Closed World specialization technique.

Closed World Specialization Algorithm
Input: Set of clauses T and ground atom A such that
TI -A and A incorrect

Let C be the clause in T which resolved with A
in the sLDNF-resolution proof of T I-A

Let U be the substitution for variables in C produced by
the sLDNF-resolution proof of TEA

If the body of Ccontains a literal notp(B) then
Let T' = T U{B0}

Eise
Let {VI, , 1/,} be the domain of 0
Let q be a predicate symbol not found in T
Let Hdbe the head of C
Let Bd be the body of C
Let B be q(VI, , V„)
Let T'= T—{C}U{Hd:—(Bd Unotp(B))}U{B0}

Output: T'

In the following example we show how this algorithm operates on the
'bird' example.

Example 13 Let T be the set of clauses {flies(X):—bird(X)),
bird(eagle):—), bird(emu):—)1 and the true ground atoms in M, the
intended interpretation of T, be a superset of {ffies(eagle), bird(eagle),
bird(emu)}, where A = flies(emu) is not true in M. Tis incorrect with
respect to M since the clause C = (flies(X):—bird(X)) is incorrect with
substitution 0 ={X/emu}. The body of C does not contain a literal
notp(B). {X} is the domain of 0. Let q be 'flightless'. B is flightless(X)
and T' is {(flies(X):—bird(X), notp(flightless(X))), (bird(eagle):—),
(bird (emu):—), (ffightless(emu):—)}. Thus, unlike the methods in
Section 1.3„ffies(sparrow) can be proved from T' U Ibird(sparrow):-1.

An implementation in PROLOG of the Closed World Specialization

112

BAIN AND MUGGLETON

Algorithm has been completed. This version of the algorithm forms part
of the CIGOL system. So far the implementation has been tested and
works as expected.

4. DISCUSSION

Although, as stated in Section 1.4, non-monotonic logic is a well-
explored topic, the non-monotonic representations that have been
developed to date have not been applied in machine learning. From
practical experience gained with the CIGOL learning system [10] it was
found that it was necessary to have a specialization mechanism in order
to produce monotonic performance increase. In this paper we have
shown that 'minimal specializations' necessary to achieve this monotonic
performance increase cannot be achieved in a classical logic represen-
tation (Section 2). They can, however, be achieved using a non-
monotonic representation (Section 3). The reader should note, however,
that the 'Closed World Specialization' technique described in Section 3
does not produce specialization as defined in Section 1.2 since the
resultant theory T' is not entailed by the initial theory T because of the
new introduced predicate symbols.
We hope also to be able to address the issue of noise within our Closed

World Specialization scheme. Clearly it is important not to be too hasty
in constructing new exception predicates when dealing with noisy data.

APPENDIX A—PROOF OF THEOREM 7

This appendix contains the lengthy proof of Theorem 7 from Section 2.
A related result known as the ̀ Subsumption theorem' was proved by Lee
[4]. For the purposes of the proof we will make various definitions based
on the theory of resolution-theorem-proving [16]. We define a
derivation expression DE as follows

Either DE is a non-empty clause or DE is the expression
((DE0/1).(DE2,/2))

where DE1 and DE2 are derivation expressions and l and /2 are literals
found in the clauses in DE1 and DE2 respectively. The resolvent of a
derivation expression is defined recursively as follows.

resolvent(DE) =

DE i f DE is a clause
Resolution of (/, V E1) 0, otherwise if DE =((DE1,1,).(DE2,12))
and (12 V E2) 02 resolved and resolvent (DEO = (I, V E1)0,
on 1, 01 and 11 02 and resolvent(DE2) = (12 V E2) 02

and 1101,1,02 is a
complementary pair

undefined otherwise

113

NON-MONOTONIC LEARNING

Since the dot(.) operator represents binary resolution it is commutative,
non-associative, and non-distributive. These dotted derivation expres-
sions are an extension of notation introduced in [11]. Clearly C is an
element of R*(T) if and only if there exists a derivation expression
whose clauses are all elements of T and whose resolvent is C. We say that
a derivation expression RE is a refutation expression whenever
resolvent(RE) = O. It follows from this definition of a refutation expres-
sion that RE must be a dotted expression and not simply a clause.
Next we define the partial recursive function deriv: set of unit

clauses X derivation expression '-derivation expression. This function
transfers the elements of the set of unit clauses found in the given refu-
tation expression to the clause found at the root of a new derivation
expression.

deriv(U,DE)=

DE
deriv(U,DE2)

deriv(U,DE,)

(deriv(U,DEO•
deriv(U,DE2))

undefined

if DE is a clause and DE t U
otherwise if DE = (({11},11)•(DE2,12))
where 41€ U

otherwise if DE = ((DE! >11)*{12),12))
where /21€ U

otherwise if DE = ((DE1,11)•(DE2,12))

otherwise

Note that deriv(U,DE) is undefined whenever DE is a clause and DEE U.
However, if RE is a refutation expression and C is a set of unit clauses
then no sub-expression of deriv(C,RE) will be undefined. A refutation
expression is a derivation expression and thus, by definition, is not an
empty clause. Also from the definition of deriv it will be noted that for no
recursion deriv(C,DE) will DE be an element of C when C is not a
tautology. Clearly there is a one-to-one correspondence between the
sub-expressions of the result of deriv(C,RE) and a subset of the sub-
expressions of RE.

Theorem 7 (Clause entailment using resolution) Let T be a set of clauses
and C be a non-tautological clause. TF C if and only if there exists D in
R*(T) and substitution 0 such that DO.g. C.
Proof The 'if' part is trivial since TFD and DFC, thus TF C. We now
prove the 'only if' part constructively. Let C = (/1 V /2 V ...).Using
Lemma 5, TFC if and only if T A C is unsatisfiable. Let C= (r, A A
. . .) Os where Os is a skolemization of the variables of C. Note that we can
write 0;1 as a deterministic ̀ deskolemization' rewrite because of the
nature of skolemization.
Following a convention introduced in [15], resolution-based refuta-

tions and derivations are drawn as binary trees. There is a one-to-one
correspondence between derivation expressions and derivation trees.
Figure 1 represents the transformation of a refutation tree into a deriva-
tion tree using ̀ deriv'. In this figure both the refutation tree and the

114

Refutation tree

(n f)Of I

(tnk+iVEk)Ok

001

BAIN AND MUGGLETON

Derivation tree

(1';Vmk+IV E40,.

(m;,+IVEl)Ol

(EkV E)Ok+1

•

(riV M k E 10)0 k.

(1'1V ...Vnf.)0f._, (n'r)

(114+1V Ek.)ffk.

(1' ,V E Ek")0k.+ I

Figure 1. Transformation of refutation tree into derivation tree using 'deny'.

derivation tree represent general cases. The diagonal ellipses (..) merely
indicate a path formed from any number of resolution steps. A capital
letter or its prime with a subscript, such as El, stands for a clause. A lower
case letter or its prime with a subscript, such as 1,' stands for a literal
found within a clause of theory T. A lower case Greek letter or its prime
with a subscript, such as Ok' represents a substitution. Note that sub-trees
labelled FOh represent trees of maximum depth s h. The depth of a tree is
defined in terms of its corresponding derivation expression as follows

0
I

if DE is a clause
depth(DE) =

max (depth (DE,), depth (DE2))+1 if DE = ((DE1,11).(DE2,12))

Note also that 0,. nodes in the derivation tree correspond to Oi nodes in
the refutation tree.
Let D = (11 V . . .) Of*. For the purposes of the proof it is necessary to

show that there exists a most-general-unifier (mGu) for each resolution
step within the derivation tree of Figure 1 and that there exists a substitu-
tion 0 such that DOg C. We will first prove by induction on k* that there
exists a substitution Grk* such that Ovule.= Ok for all corresponding Oks and
Ok where k*E10,1, . 41. ,
For the base case, k* =0, and thus the maximum depth of the sub-trees

involved in the derivation tree is less than or equal to 0. For any such sub-
tree 0k= 0„ = 0 and letting ak .= Ok, clearly Ok.aks= 00k= Ok where Ok is
the substitution applied at the corresponding node in the refutation tree.
This proves the base case. We make the inductive hypothesis that there
exists al. such that Beal.= Of for all corresponding Of. and Oi where
0 ‘..:1*.-. k* and k*> 0. Now we must show that there exists Gk.,' such
that Ok*+10-e+1= °k+1 for all corresponding 00+1 and Ok+1. With ref-
erence to Figure 1 and the inductive hypothesis we know that
mk+ I Beak* = mk+10k and rtrk+10k%ak'.= mi+10. We also know from the

115

NON-MONOTONIC LEARNING

refutation tree in Figure 1 that mk,,Ok and M‘k+1 O'k have an hicu, call it
,uk +1, such that mk+i0k,uk+ = m +10'kyk+ Thus in the derivation tree in
Figure 1 mk+10k* and M'k+101 .' must have an mou, call it ,uk.+ 1, since
using the inductive hypothesis they at least have the unifier ak.cik*,1k+1.
By the definition of an MGU pie + is an Nicu only if there is some substitu-
tion ak..+1 such that "ak* ak*ak*,u k*,. 1. Now 00+1=
and thus 0 k* I CIk* + 1= 0 k*Ok' k* ÷ IC k* i• Also 0k 1= 0 k0;‘,14k 4. =
Ok*Grk*O;(*Cropk+i by the inductive hypothesis. Since 0 k* and ak* share no
variables with O'k* and a Ok+i=Ok*O'k*akta'k.,uk.". But from above
yks+laks+1 = ova ;Auk +1 and thus Ok+1= Ok*Ok'*iltk*+1(70+1= 00+10"0+1,

which proves the inductive step. Thus there is an MGU for every resolu-
tion step within the derivation. We must show now that DO C'.

Since C= (4A 12 A . . .) ()sit follows that all T, 0, are ground literals. Thus
if (/,0„ 1;) is a complementary pair in the refutation tree with ivicu yi, this
substitution must be a ground substitution whose domain is the set of
variables found in 1. Also, since y, is ground, y,g. Of and since 1,0s it
follows that (1; V ...) 01g CO,. But we have proved already that
Of= Opar, and thus (1; V . .)Orarg CO„ But D = (1; V . . .) Op, and thus

Daf *c CO' Since skolem constants can be unbound without conflicts
Da10,- I C0,0;1, or Dares-1 C. Letting 0 = are; we complete the
proof since this gives DO .0 C. QED.

APPENDIX B—'DERIV' AS AN EXPLANATION-BASED
GENERALIZATION TECHNIQUE

The 'deny' function of Appendix A turns out to be almost entirely iso-
morphic to the EBG algorithm 'prolog_ebg' described in [3]. The main
differences between deny and prolog_ebg are as follows. Firstly, while
deny acts on general clauses, prolog_ebg is restricted to Horn clauses.
Secondly, prolog_ebg depends on a user-defined 'operationality
criterion'. No such criterion is necessary for deny. Thirdly, although EBG
is supposed to find a 'generalization of the training example that is a
sufficient concept definition for the target concept and that satisfies the
operationality criterion' [3], we are not aware of any rigorous definition
or proofs concerning these aims. On the other hand, it can be proved for
deny that if there is only one refutation of TA Cthen the resolvent D of
the derivation expression returned by deny is the most general clause
which both 0-subsumes C and is entailed by T This condition places a
useful bound on the complexity of D. That is that D must be smaller than
C since it 0-subsumes C. No such bound exists for the size of the clause
returned by prolog_ebg. In fact, when we ran prolog_ebg on the
exponential function coded in PROLOG using Peano arithmetic for multi-
plication and addition the number of literals in the returned clause was
exponentially r,elated to the value of the exponent within the example.

116

BAIN AND MUGGLETON

This seems to indicate that prolog_ebg would not be good at helping to
speed up searches in intractable domains such as game playing, though
deny might be.
We have coded a version of deny called ̀ dry' which runs on Horn

clause examples. The PROLOG code is given below.

% drv(C,D)—finds the most general clause D which is entailed by
% the background theory and theta-subsumes C. The bodies of
% C and D are expected to be terminated with the atom "true".

drv((H B),(HGen BGen)) :—
functor(H,F,N), functor(HGen,F,N),
skolemises(RH B)1,0,_),
drv(H,B,HGen,BGen,true).

% drv(Goal,Units,GenGoal,GenBend) — adapted Prolog
% interpreter which proves the Goal either against program
% clauses or against the set of skolemised Unit clauses. D's head
% (GenGoal) and body (GenB) are formed by carrying out all
% resolution steps except those involving Units. The atomic
% formula "true" is passed as GenBend and placed at the end of
% GenB.

drv(true,,true,GenB,GenB) !.
drv((X,Y),U,(GenX,GenY),GenB,GenBend) !,

drv(X,U,GenX,GenB,NewEnd),
drv(Y,U,GenY,NewEnd,GenBend).

drv(G,U,GenG,GenB,GenBend) :—
clause(GenG,GenGs),
copy_term((GenG GenGs),(G :— Gs)),
drv(Gs,U,GenGs,GenB,GenBend).

drv(Goal,U,GenGoal,(GenGoal,GenB),GenB) :—
gmem(Goal,U).

% skolemises(Terms,N,M) — binds all variables in Terms to skolem
% constants in the range [N..M-1

skolemises(H,N,N).
skolemisesaS(N)IT],N,M) !,

Npl is N+ 1,
skolemises(T,Npl,M).

skolemises([TmIT],N,M) :—
Tm = [_ITms],
skolemises(Tms,N,0),
skolemises(T,O,M), !.

117

NON-MONOTONIC LEARNING

)̀/0 gmem(Goal,Units) — unifies Goal to a member of Units if
% possible. Otherwise fails.

gmem(X,X).
gmem(X,(A,B)) :—

gmem(X,A) ; gmem(X,B).

This was run on the 'suicide' example from [3]. The background knowl-
edge was

kill(A,B) hate(A,B), possess (A,C), weapon (C).
hate(W,W) depressed(W).
possess(U,V) buy(U,V).
weapon(Z) gun(Z).

When given the goal drv((kill(john,john), depressed(john),
buy(john,gunl), gun(gunl), day(tuesday), true), D), D is instantiated
to (kill(X,X) depressed(X), buy (X, C), gun(C), true). In this case
dry produces the same result as prolog_ebg. However, given the stan-
dard recursive definition of list membership, the goal
drv((member(3,[1,2,3]) :— true), D) instantiates D to (mem-
ber(A,[13,C,AIDD :— true). On the same problem prolog_ebg merely
produces the standard recursive clause (member(A,[131C]) :— mem-
ber(A.,C)), which is not a useful generalization.

REFERENCES

1. Chang, C. and Lee, R. (1973). Symbolic logic and mechanical theorem proving.
Academic Press, London.

2. Clocksin, W. F. and Mellish, C. S. (1981). Programming in Prolog. Springer-Verlag,
Berlin.

3. Kedar-Cabelli, S. T. and McCarty, L. T. (1987). Explanation-based generalization
as resolution theorem proving. In Proceedings of the Fourth International Workshop
on Machine Learning, (ed. P. Langley) pp. 383-89, Morgan Kaufmann, Los Altos.

4. Lee, C. (1967). A completeness theorem and a computer program for finding
theorems derivable from given axioms. PhD thesis, University of California,
Berkeley.

5. Lloyd, J. W. (1984). Foundations of logic programming. Springer-Verlag, Berlin.
6. Michalski, R. and Larson, J. (1978). Selections of most representative training

examples and incremental generation of VU 1 hypotheses: the underlying
methodology and the description of programs ESEL and AQII. UIUCDCS-R
78-867, Computer Science Department, Univ. of Illinois at Urbana-Champaign.

7. Michalski, R. S. (1983). A theory and methodology of inductive learning. In
Machine Learning: An Artificial Intelligence Approach (eds R. Michalski, J.
Carbonnel, and T. Mitchell) pp. 83-134, Tioga, Palo Alto, CA.

8. Mitchell, T. M. (1982). Generalization as search. Artificial Intelligence, 18, 203-26.
9. Genesereth, M. R. and Nilsson, N. J. (1987). Logical foundations of artificial

intelligence. Morgan Kaufmann, Los Altos.

118

BAIN AND MUGGLETON

10. Muggleton, S. H., Bain, M. E., Hayes-Michie, J. and Michie, D. (1989). An
experimental comparison of human and machine learning formalisms. In
Proceedings of the Sixth International Workshop on Machine Learning, Kaufmann.

11. Muggleton, S. H. and Buntine, W. (1988). Machine invention of first-order
predicates by inverting resolution. In Proceedings of the Fifth International
Conference on Machine Learning, pp. 339-52, Kaufmann.

12. Niblett, T. (1988). A study of generalization in logic programs. In EWSL-88,
Pitman, London.

13. Plotkin, G. D. (1971). Automatic methods of inductive inference. PhD thesis,
Edinburgh University.

14. Quinlan, J. R. (1983). Learning efficient classification procedures and their
application to chess endgames. In Machine Learning: An Artificial Intelligence
Approach, (eds R. Michalski, J. Carbonnel, and T. Mitchell), Tioga, Palo Alto, CA.

15. Robinson, J. A. (1965). Automatic deduction with hyper-resolution. Intern. Jour. of
Computer Math., 1 pp. 227-34.

16. Robinson, J. A. (1965). A machine-oriented logic based on the resolution principle.
JACM, 12 No 1 pp. 23-41.

17. Shapiro, E. Y. (1983) Algorithmic program debugging. MIT Press.
18. Wrobel, S. (1988). Automatic representation adjustment in an observational

discovery system. In EWSL-88, pp. 253-62, Pitman, London.

119

9

Interactive Induction

W. Buntine t
University of Technology, Sydney
Australia

D. Stirling
BHP Steel International Group,
Australia

Abstract

A variety of artificial intelligence induction systems are being success-
fully used for knowledge acquisition. In some of these systems, knowl-
edge acquisition is not an automatic process but rather an interactive
process between expert/user and system, with induction serving as the
focus. We refer to this generic approach as interactive induction. In this

. paper we examine some case studies, and discuss the approach and
software facilities required to support it. Key features for success are the
methods and man-machine environment employed to elicit prior,
subjective information from an expert (in order to augment the knowl-
edge implicit in the training data), together with the expert's acceptance
and validation of the knowledge induced.

1. INTRODUCTION

A common task in building knowledge-based systems is inducing a rule
to handle classification. Given a set of classified examples of a concept,
the task is to develop a classification rule to predict the class of further
unclassified examples. This task is performed by induction systems as an
aid to knowledge acquisition [23, 13] when examples are available but
more general, explicit knowledge is insufficient.

Artificial intelligence induction systems are successful because they
match two key requirements for expert systems: validation and user/
expert acceptance. Not only do they produce knowledge, essentially
from fragments of knowledge, but they also pay careful attention to the
task of gaining the expert's acceptance (and validation) of the knowledge
produced. Two features of knowledge that are important for this are
accuracy and comprehensibility.
Buntine [5] showed that when these systems are applied to training data

I-Present address: Turing Institute, Glasgow, UK.

121

INTERACTIVE INDUCTION

representing a historical data base, their inductive power (that is, the
potential for inducing accurate knowledge) must come from additional
subjective information provided by the expert. The term 'subjective'
applies because the information often does not come directly from data
or other objective sources but from the expert's own experiences.
An expert can provide this subjective information in several ways

using current commercially available induction tools [14]. The expert
may provide 'useful' attributes (features or descriptors) for describing
examples. This provision does not necessarily have to be made overtly.
With medical records, for instance, only relevant decision-aiding details
about a patient tend to be recorded. It is these details that are passed to
the induction system, along with the expert's implicit stamp of approval.
Secondly, the expert may appraise results of induction and possibly
resubmit certain fragments for further processing. Finally, the expert
may submit a set of hand crafted tutorial examples about which knowl-
edge is expected to be built. Recent developments extend this list
considerably [1, 3, 12], providing post-editing of rules, interactive build-
ing of rules, manipulation of data (for instance, user-defined thresholds
for numeric attributes), and several other features for expert interaction.
There are, of course, other methods for obtaining subjective infor-

mation from an expert: the traditional manual knowledge acquisition
method [8], and hybrid methods such as computer-aided interviewing
[4] and computer-aided knowledge refinement [20]. Although sophisti-
cated aids for input, interviewing, and editing are improving the speed of
these interview-driven methods, they are still time-intensive for the
expert. In addition the knowledge is not always reliable (examples of this
will be given in Section 2). Significant inconsistencies between what an
expert says he does, what he actually does, and what he should have done
by hindsight are common [8]. For instance, in the context of uncertainty,
people have limitations with reasoning and in articulating their reasoning
[10], so knowledge elicited must be interpreted with caution [7]. This
can be partially overcome by working in a structured probabalistic
environment [9, 26], although maybe at the expense of even slower
development time.
In this paper we identify and discuss a generic induction approach we

call interactive induction that offers an alternative method for eliciting
subjective information from an expert during the course of knowledge
acquisition. The approach extends 'pure' induction by involving the
expert in the provision of additional subjective knowledge and in the
incremental evaluation and validation of the knowledge induced. It is
economical with the expert's time because it performs these tasks in a
way that the expert feels comfortable with. Like other induction
approaches and in contrast with non-inductive knowledge acquisition
ones, it is still able to induce knowledge beyond that which is articulable

122

BUNTINE AND STIRLING

or known by the expert. Unlike earlier induction methods, induction is
not viewed as an automatic process, and interaction does play a key role.
We present a number of case studies in Section 2, and in Section 3

consider aspects of the knowledge engineering problem pertinent to the
interactive induction approach. In Section 4 we discus g software features
needed to support this approach.

2. CASE STUDIES

In this section we introduce and discuss some induction cases that
illustrate various styles of interactive induction across different domains
and induction tasks.
An interactive approach to induction was first reported by Shapiro

[27]. He extended an ID 3-like rule induction algorithm so that the tree-
building process itself, the selection of tests at each new decision tree
node, could be guided by the user/expert. Michie [15] describes an
application of this technique to the credit assessment domain, in which a
5 per cent increase in accuracy over automatically generated trees was
obtained.

. Kodratoff and Tecuci describe the DISCIPLE System [11], a system that
interactively develops rules from data by extracting explanations from
an expert. Expert-supplied explanations, like interview-obtained rules,
are well known to be often incomplete or overly general. Nevertheless,
explanations are a common source of subjective information in the train-
ing of novices; it should come as no surprise that they can also play a key
role in inductive knowledge acquisition.
The remaining subsections illustrate different facets of interactive

induction: knowledge-base bootstrapping, the use of an oracle during
induction, and the role of explanation for validation.

2.1. Producing coated steel

This first case concerns the production of coated steel products [28].
These products have different steel type, formability, surface finish,
length, etc, and a plant should be able to produce thousands of such
products. In addition, potentially thousands of different processing
sequences can be used in their manufacture. For instance, there are
various machines for annealing, reducing, slitting, shearing, painting,
packing, etc.; each machine can only operate on certain kinds of steel
and needs to be used in the correct sequence.
Our problemt was to develop a system to suggest routings (a sequenc-

ing of machines along with machine instructions) for the manufacture of

-1- This reports exploratory research being undertaken jointly between the Sydney
Expert Systems Group and BHP Steel International Group, Coated Products Division
(cm).

123

INTERACTIVE INDUCTION

-•■

new products. The expertt for this task helped design the original
software used for controlling CPD'S Port Kembla facility and is familiar
with the possible kinds of steel products, existing routings, the
machinery used, and general metallurgy.
As to the problem at hand, the expert could, after some discussion,

suggest a general strategy, provide worked-through examples, general
hints, and a few rules of thumb, and so on.
As a result, we broke the problem up into two parts and chose to focus

initially on 'cold-rolled' steel products. The process grammar problem
described in Section 2.1.1 induces a simple grammar to determine which
routings can be used for these products. The processing unit selection
problem described in Section 2.1.2 finds, for each branch in the
grammar, which path should be taken by a particular product. For
instance, of all the 'cold reduction' machines (as found in a particular
place in the grammar), which should be used for the manufacture of
CA5OT (cold rolled, aluminium killed, temper-rolled steel with a
minimum hardness of 50 Rockwell B)?
Even though the expert was skilled at the problems concerned, after

the first few interviews it was clear that manual knowledge acquisition
would be a protracted process. His difficulty was, as usual, with articula-
tion: expressing knowledge at the right level of abstraction and degree of
precision, organizing knowledge and ensuring consistency and com-
pleteness. For instance, he sometimes gave merely a list of special cases,
or an over-generalization and only thought of the exceptions when they
were actually raised later.

Fortunately, there were several thousand examples available in the
existing data base of products and routings, but taking into account the
number of decisions needed to arrive at a particular routing, this amount
of data is not really significant (see Section 4 in [5]). Additional,
subjective information was needed. Preliminary trials with induction
indicated a second problem existed: essentially, the expert knew too
much. He had a partial idea of what was and what was not appropriate
knowledge and he was, invariably, not satisfied with some of the output
of an induction system.
So we needed to tap into the expert's subjective information, even if it

was not entirely accurate, without going through a protracted series of
interviews, and we needed to gain his acceptance of the knowledge
produced. In the remainder of this section, we describe our experiences
on the problem to date. Although the prototype is still under develop-
ment, the knowledge acquisition and validation phase is mature.

tiohn Wiltshire of CPD.

124

BUNTINE AND STIRLING

2.1.1. Process grammars

This subsection introduces the approach taken with the overall problem:
knowledge-base bootstrapping. We describe how a process grammar was
developed for the cold-rolled products.
In an initial interview, we asked the expert to 'describe the kinds of

routings usually found for cold-rolled products'. His final answer is
illustrated in Figure 1. This confirmed two details essential for the boot-
strapping approach: a reasonable grammar should exist, and the expert
should be sufficiently articulate to reason about general statements on
routings. This initial interview also provided information useful for the
induction process. For instance, 'transfer' steps could be deduced from
other parts of the routing, the location of the machines used before and
after a transfer, and 'test' steps were oddities that could be inserted later.

pickle-line
five-stand-mill / reversing-mill
coil-temper-mill / coil-anneal / cont.-galv.-line
[paint-line / tension-leveller(TL)]
pack(generic)
dispatch(generic)

Figure 1. Expert's initial grammar. (Bracketed (H) items are optional. Items on the same
line, separated by '/' are alternatives. Items otherwise follow each other sequentially.)

We then induced a grammar from the existing set of cold-rolled rout-
ings (without using the expert's initial grammar). This induced grammar
was a sufficient starting point for the expert. It forced him to think of all
the exceptions and gave him a recognizable grammar to work with. He
was sufficiently unfamiliar with grammars, flow charts, and so on, to
make this assistance valuable.
The expert made a number of refinements to the grammar and pro-

vided names for many of the stages. A simplified version of the final
grammar is shown in Figure 2. In comparison with Figure 1, notice the
extra detail and the change in the overall structure (reversing-mill
appears in two places and paint-line and tension leveller can occur
together in the one routing).
With little effort by the expert, we were able to develop a grammar for

cold-rolled products. This grammar, validated by the expert and on test
data, now provides the framework about which the remainder of the
system is being developed. Induction in this knowledge acquisition
episode has served the purpose of bootstrapping subsequent manual
knowledge refinement. This allowed a more complete grammar to be
developed and validated than through either induction or interview
alone.

125

INTERACTIVE INDUCTION

pickielpickle-line [test]]
reduction:[five-stand-mill [test] / reversing-mill [test]]
annealing:[decarb.[test] / coiler open-coil-anneal coiler /

[clean] coil-anneal/ cont.-galv.-line / clean]
tempen[coil-temper-mill [coil-temper-mill/test] /

reversing-mill [test]
tensioniEGL TL / TL EGL / EGL[test] / TL[test]]
finishing-stages:[paint-line(generic)]

[slit] [shear[reshear]] / [elec.-steel-slit] [shear] / Yoderline
pack(generic)
dispatch(generic)

Figure 2. Induced grammar after expert's refinements. (Stages are in italics.)

2.1.2. Processing unit selection

When applied in the role of knowledge-base bootstrapping, induction
systems need more than just accurate rules output. This subsection
demonstrates the importance of the induction user-interface to the
process of knowledge-base bootstrapping. We describe how rules were
developed for selecting particular processing units. For instance, in the
annealing stage, which of the six options should be chosen for a given
product? This kind of knowledge would complement the process
grammar so that routings could be developed.
We asked the expert, 'for each stage of the process routing how might

you chose between several alternatives?' This was reasonable to ask as
he had identified that the stages were meaningful to him. He responded
by formalizing various example rules as illustrated by part of the pickle
stage set shown in Figure 3a. Using ID3 [21] and the rich set of attributes
in the product data base, decision trees were grown for each multiple
path stage in the grammar of Figure 2. The decision tree and a new rule
for the pickle stage are also given in Figure 3. The expert's initial attempt
at formalizing his knowledge brought out a combination of specific and
fuzzy attributes such as, 'if the product is CK1055 and it is overly thick
then don't pickle'. In using ID3 we were able both to identify missing or
yet-to-be formalized knowledge and adequately to quantify previously
vague attributes and their values. Most of the induced decision trees
formed reliable generalizations of the specific instances cited by the
expert.
The decision trees generally gave high accuracy on a test set, but they

were not acceptable to the expert. Some of the problems could have been
recognized and accounted for before the induction process began by
using an appropriate induction methodology (to our knowledge, no
general methodology for the interactive style of induction has yet been
reported). However, in general, we believe the expert needs to be

126

BUNTINE AND STIRLING

Default is pickle only:

rule 1: If steel = C & thickness > 3.2 mm
then don't pickle

rule 2: If product (CA7OT or CA6OT or CK1055) & overly thick
then don't pickle

rule 3: If product (CM350-G)
then pickle and test

(a) Rules for pickle stage suggested by expert.

steel = [pickle-line] (0)
steel = R: [pickle-line] (62)
steel = A: [pickle-line] (102)
steel = U: [pickle-line] (33)
steel = S: [pickle-line] (8)
steel = W. [pickle-line] (4)
steel = V: [pickle-line] (7)
steel = K:
— thick < 2.25: [pickle-line] (15)
— thick > 2.25: [don't pickle] (10/2.0)
steel = M:
— strength > 475: [pickle-line] (14)
— strength < 475:
— — thick < .1.3995: [pickle-line] (5/1.0)
— — thick > 1.3995:
— — — width < 609.949951: [pickle-line] (3)
— — — width > 609.949951: [don't pickle]

(b) Decision tree built for stage.

rule 4: If steel = K & thickness > 2.25
then don't pickle

(c) Additional rule from decision tree omitted by expert.

Figure 3. Combining induced and elicited knowledge.

prompted with incomplete rules before the relevant knowledge will
spring to mind. As experience with induction increases, need for
prompting decreases.
For instance, a test was often made on 'length' in decision trees on

early pre-painting and shearing portions of the routing grammar, when

127

INTERACTIVE INDUCTION

in fact length was known by the expert only to be important in the later
stages. All steel products are initially treated as continuous coil. Width
or thickness are much more relevant attributes in early processing. A
similar situation existed for several other attributes. When inducing rules
for certain stages of the grammar, the use of such irrelevant attributes
needs to be suppressed.
Also, the 'length' attribute can only be meaningfully tested after

another attribute, 'shape', has been evaluated. Only products of shape
'sheet' have a 'length'. Other attributes encountered also exhibit a similar
dependency. Several of the decision trees that tested 'length' before
'shape' look ridiculous to the expert. To overcome this kind of problem,
an induction system needs to be able to pre-define a precedence on
attributes, or more general controls on allowable classes of rules. A
similar problem exists in the credit-assessment domain (that is, credit
card applications) where managers are reluctant to accept rules that,
regardless of measured performance, have some obvious flaws [6].

Finally, the treatment by ID3 of continuous variables was sometimes
confusing to the expert. These subsequently needed to be readjusted to
the nearest recognizable break-point to assist the interpretation of the
decision tree concerned. Further discussion with the expert revealed that
the process routing domain contains a reasonably static set of values for
some continuous variables. For example, typical thickness break-points
are: <0.3 mm, <0.7 mm, <1.6 mm and > 1.6 mm. It is clear that an-
induction system needs to front-end onto a data base system so that
flexibility is available in the choice of attributes as the induction cycle
progresses.
As well as being processed by ID3, the data were later processed by

Quinlan's ca [22, 23] to provide a comparison. This is an enhanced form
of the ID3 induction tool that generates explicit conjuctive rules instead
of decision trees. An example of ca output appears in Figure 4.
These rules were much more comprehensible to the expert than

straight decision trees. Sets of conjunctive rules are, in general, simpler
and more comprehensible than trees. Comprehensibility is essential in
the interactive approach. ca also gave a measure of strength for each
rule—a useful guide to whether the rule could be ignored or whether it
needed further thought on the expert's part. We were able to get con-
siderably more feedback from the expert when working with ca rather
than ID3. For instance, of the rules initially produced by ca, about a half
were acceptable to the expert (note that despite only fair acceptance,
these rules had a high accuracy). Some examples are given in Figure 4a.
Poor choices for tests, however, were found in other rules. An example is
shown in Figure 4h. While such a rule is not too inaccurate, it exhibits
coincidental attribute and class relationships that, to the expert, are not
acceptable knowledge for designing routings.

128

BUNTINE AND STIRLING

Default class is tight coil annealed

Rule 1:
family = TN (0.08)

continuous galv. line [99.4%]
Rule 2:

steel = R (0.73)
condition = S (0.82)
surface-quality = - (0.28)

IHI coiler, OCA, IHI coiler [99.3%]
Rule 3:

surface-quality = D (0.05)
cleaning line & coil anneal [99.1%]

Rule 5:
steel = V (0.04)
thick > 0.75 (0.85)
thick < 2.5 (0.92)

IHI coiler, OCA, IHI coiler [94.4%]
Rule 16:

hardness > 82.5 (0.03)
no annealing [98.4%]

Rule 23:
steel = M (0.40)
strength > 450 (0.54)

IHI coiler, OCA, IHI coiler [96.3%]

(a) Good and robust.

Rule 15:
hardness > 75 (0.03)
width > 39.5 (0.93)

no annealing [98.5%]

(b) Weak with unrealistic dependency on width.

Figure 4. Example of induced rules for annealing stage rated by domain expert.

In addition, the expert was willing to modify rules and to suggest
further changes for future induction on the same data. Two examples are
shown in Figure 5. After reviewing the reduction stage rules he sug-
gested that the edge trimming attribute tw/me' and others should be
suppressed in induction in the basic stages. He knew these attributes to
be relevant only in the finishing processes. Also, an annealing stage rule
needed to be modified to reflect the maximum width constraint on the

129

INTERACTIVE INDUCTION

Rule 14:
bw/me = B (0.20) '\ ... removed attribute from induction
thick < 1.8 (0.94)
width > 1320.0 (0.99)

five stand mill only [99.3%]

(a) Identification of inappropriate attribute for stage.

Rule 26:
strength < 450 (0.23)
width > 805 (0.08)
width < 1137.5 (0.10)
group = S (0.03)

decarb. and test [80.0%]

(b) Limitation on width processing for unit.

Figure 5. Example of expert's modification of rules.

... modified to 1075 mm

decarburizing unit. Notice that in the first case involving the inappropri-
ate attribute, ca's measure of the importance of the attribute is low.

After considering the work so far, the expert was able to develop a
more refined notion of which attributes were relevant for stages in the
processing. Using the reduced set of attributes for the basic processing
stages, pickle to painting (in Figure 2), another iteration of rule
induction with ca was made. This improved the rule acceptance level by
some 5-10 per cent to a rate of about 50-60 per cent on average. This is
not as high as was hoped; the expert believes there are some atypical
groups of routings in the product data.
Knowledge acquisition, after some initial interviews, focused around

several iterations of induction. The expert's interaction contributed in
two ways. First, he helped in constraining the induction input, in
reframing each induction problem, and in correcting data so that more
effective and comprehensible rules could be produced. This seemed to
be an evolutionary process, evolving as the expert became more aware
and articulate about the kinds of knowledge needed to improve the
induction system's performance. Secondly, the expert acted as an oracle,
in refining and validating induced knowledge. Rules that, perhaps after
modification, were accepted by him could then be put aside for inclusion
in the final knowledge-base. Both these modes of interaction, reframing
the induction problem and refining the induced knowledge, seemed to us
to be essential when working with a particularly articulate expert.
Throughout this interaction the expert's own knowledge has also been
improved and formalized. For instance, a clean-up of the existing

130

BUNTINE AND STIRLING

routings data base is now underway, based on the expert's experiences
during knowledge acquisition.

2.2. New concepts in neuro-psychology

This case describes some work by Muggleton [18, 17] that demonstrates
the importance of involving the expert, as an oracle, in the process of
vetoing and validating new concepts.
With several days' work for a domain expert, a system was inductively

developed for deciding dysfunction of the left parietal brain area. This
system performed considerably better than an existing manually-built
expert system and a second generation manually-built system several
months into its development cycle (90 per cent compared with 82 per
cent and 65 per cent agreement with expert). The knowledge produced
was also more comprehensible to the expert and consequently gave
better explanations when operating.
The general approach used was, in our terminology, interactive

induction. The Duce system [19] suggested new concepts potentially
useful for deciding dysfunction, and concurrently induced rules. The
expert acted as an oracle for concepts; that is, the expert's role was to
,veto concepts suggested by the system and to name appropriately those
that were accepted. This provided needed subjective information and
validated the worth of the intermediate concepts at the same time. The
importance of the interaction was confirmed experimentally. Without
the expert's involvement the induction system performed poorly at the
same task.

Potential concepts were presented to the expert in a manner with
which she felt comfortable; this was critical to the system's performance.
In an early version of Duce, concepts were presented in rule form.
Because examples were highly abstracted and reduced case records, this
representation was particularly foreign to the expert and so, typically,
incomprehensible. In the current Duce, rules are presented by means of
examples instead. The veto process was also speeded up by allowing the
expert an option to specialize a concept if it was not appropriate. This
helped guide the search for appropriate concepts.

2.3. Diagnosing electrical transformers

This case describes some work by Muggleton and Riese [16, 24] that
highlights the need for comprehensibility, demonstrating the importance
of the 'explanation' in the process of validating induced rules.
A system called EARL was developed for diagnosing imminent break-

down in large oil-cooled electrical transformers. The service inter-
ruption and repair or replacement cost of these can run into millions of
dollars; the accepted rate of human diagnostic failure in this domain is
below 0.1 per cent.

131

INTERACTIVE INDUCTION

When the final (inductively built) system was validated against 859
test cases, it was found that the system was in total agreement with the
expert as far as the diagnosis was concerned. However, in four of the 208
cases in which the expert and system agreed a problem existed, closer
inspection revealed that the underlying reasoning of the expert and
system differed. These cases were interpreted as erroneous by the expert
and subsequent refinement was needed. Without comprehensibility of
induced knowledge, these problem cases could not have been located.

3. KNOWLEDGE ENGINEERING ASPECTS

With the constraints of minimizing the expert's time, and producing
knowledge with an acceptable level of accuracy and comprehensibility
to aid the validation and evaluation tasks, knowledge acquisition has all
the ingredients of an intriguing optimization problem in a man—machine
setting. In this section we make an overview of features and tasks in the
knowledge engineering process pertinent to interactive induction.
Whether induction, interactive induction, or interview is appropriate

for knowledge acquisition depends on a range of issues; some are given
in Table 1. The main choices to be made are on the method of validation
and on the particular style of acquisition.
Not surprisingly, the validation of induced knowledge has become a

key task assisted by the interactive approach. Factors affecting the
choice of validation methods are essentially those in Table 1. For
instance, if a sufficiently large amount of data is available accuracy can
be reliably determined merely by performance of the system on that
data. Typically this is not the case, so another standard method of
software validation is usually adopted: perusal of the 'code' by someone

Table 1. Features of a knowledge acquisition problem.

Feature Description Section

Expert's How articulate and reliable is the expert? 2.1
capabilities What sort of subjective information can he

conveniently provide?

Amount of data Less data needs to be complemented with 2.1
more subjective information

Domain features Amount of prior knowledge available, 2.1.2, 2.2
noise, etc.

Validation Degree of accuracy, confidence, and 2.3
requirements comprehensibility required

Decision How complex (for instance, in bits) is the
requirements decision? Yes/no, real valued, etc.

132

BUNT1NE AND STIRLING

sufficiently expert in the domain and software specification/require-
ments. In the knowledge acquisition context, code corresponds to
induced knowledge and usually only the expert is qualified sufficiently to
perform the perusal. For this reason, adequate presentation of rules has
also become an important task for induction systems.
Three contrasting approaches to validation were given in the case

studies.
The validation of the EARL system (Section 2.3) used an approach

combining data and expert validation. On this application, a very high
accuracy was required of the final product so extra care was needed in
validation. The system was first compared with test cases; on certain
cases the reasoning of the system was compared with that of the expert;
on a few cases, the diagnoses were actually confirmed by an (expensive)
full analysis of the actual transformers.
Duce (Section 2.2) performs validation interactively. New concepts

are validated by an oracle (the expert) right after they are proposed. The
general technique of incremental, interactive validation was also em-
ployed in Sammut and Banerji's MARVIN system [25].
In the coated steel application (Section 2.1), the process of validation

was tied to the rule refinement process. In this particular application, the
expert was sufficiently skilled and articulate about the domain so that
knowledge refinement by him was both feasible and acceptable from the
point of view of validation.
A summary of validation and other tasks for the interactive induction

approach are givsn in Table 2.
Although the choice of knowledge representation in induction systems

is usually fixed, the choice of language (that is, attributes, etc., for
describing examples) and data is up to the user. The problem formu-
lation task is about the making of these choices, and the evolving task of
refining them. The coated steel application demonstrates that an expert
can perform reformulation successfully as his understanding of induc-
tion improves and his knowledge of the domain becomes clearer.
Westinghouse Electric's nuclear fuel division [2] describes an appli-
cation where careful choice of examples proved successful. In this
application classification was not binary or discrete (for instance,
yes/no), but rather on a continuous scale from good through average to
poor. A decision tree induction system was not strictly appropriate. By
supplying only very good and very poor examples to the decision tree
induction system it was able to produce results.
The rule presentation task is about presenting rules in a manner aiding

their comprehension by the expert. For instance, in the coated steel
application, conjunctive rules were preferred by the expert over decision
trees when he performed validation or refinement. Keeping rules simple
and tests in rules meaningful, however, is not always a sufficient means of

133

INTERACTIVE INDUCTION

Table 2. Interactive induction tasks.

Task Description Section

Problem
(re-)formulation

Incorporation of
prior knowledge

Interactive rule
building

Interactive
validation

Rule
presentation

Final validation

Rule refinement

Setting-up appropriate language for describing
examples (formulating relevant
attributes), obtaining examples

Obtaining and using subjective information in
the form of partial rules, preferences, etc., or
validated rules cycled back

Having expert/user guide rule building process
interactively, see also interactive validation

Involve the expert in validation of key,
generated examples and rules during induction

Presenting induction results in a manner aiding
comprehension and validation

Validation after induction by test set or perusal
by expert

Facilities and suggestions for post-editing
of rules

Validation of For instance, assist expert by flagging outliers
data as possible bad data

2.1.2

2.2

2.1.2, 2.2

273

2.1.1,
2.1.2

presentation for comprehension by the expert. In the neuro-psycho-
logical application (Section 2.2) it was found through experience that
new concepts needed to be explained by means of examples rather than
in abstract form.
Quinlan, Compton, Horn, and Lazarus [23] describe an example of

the data validation task. In the training set used there were 10 examples
that were outliers according to the induced decision tree. These were
referred back for expert review. Most were found to have been incor-
rectly extracted from the original narrative records.

Finally, appropriate man—machine interaction is essential for success
with the interactive approach. It is the role of the system to facilitate
communication with the expert, to try and extract from him the kinds of
knowledge he can conveniently provide. Table 2 can also be viewed as a
tabulation of interaction modes between expert and induction system.
What information can actually be provided by the expert depends on his
articulation skills with respect to the problem at hand and the nature of
his cognitive grip on the domain. These, in turn, depend on the expert's
experience with teaching or explaining his methods and whether his skill
is performance-oriented or developed to a more abstract level.
The neuro-psychological application illustrates some of these prin-

ciples of communication. In this noisy domain, the expert was able to

134

BUNTINE AND STIRLING

identify concepts critical to the decision-making process, but is not able
to articulate rules; Duce is able to suggest potentially useful concepts and
then incorporate these in induced rules. Duce and the expert interact
accordingly to achieve their common goal.

4. SOFTWARE FACILITIES

Commercial induction tools provide facilities for the rules refinement
task and for the manipulation of examples, for instance, redefining
attributes. These facilities can readily be implemented using existing
technology. In accord with good software practice, however, induction
systems are being integrated with existing information systems tools
such as data base and knowledge-base management systems (with
browsers, interpreters, etc.). Many of these facilities then come free.
Other tasks described in the previous section are not so peripheral to

induction proper and require facilities built into the central induction
system, often from the initial design stage. We shall briefly mention three
types that we believe should be the focus of more intensive study.

C4 [22] produces rough statistics on the applicability of and con-
fidence in a rule and each of its components. Many variations on this
theme are possible.
Duce [19] has the expert act as an oracle. The expert has to answer

questions posed by the system, to veto and validate potentially useful
concepts. There are other ways an induction system can use an oracle.
For instance, explanation could be obtained from the oracle instead of
merely confirmation [11]. Also, the system could generate critical
examples of known concepts to help differentiate competing hypotheses.

Finally, typical decision tree induction systems currently allow no
prior knowledge to be used in induction other than the default pref-
erence for simple rules [5]. (This default preference is a consequence of
the choice of 'relevant' attributes.) Subjective information should be
taken advantage of where possible, and appropriate facilities provided.
In the coated steel application, the expert could give prior information
concerning the degree of relevance of some attributes. During knowl-
edge acquisition for influence diagram systems [26], experts routinely
convey information about independence between some (sets of)
attributes. This information allows an induction problem to be factored
into smaller subproblems.

5. CONCLUSION

It was argued that induction for the purposes of knowledge acquisition
should be interactive so that further subjective information can be input
to the process and so that the final induction product can gain the

135

INTERACTIVE INDUCTION

expert's acceptance. A number of cases have been reported which
demonstrate that the generic interactive induction approach gives
superior performance in real knowledge acquisition tasks to non-
interactive induction and to knowledge acquisition by interview ('dia-
logue acquisition method').
A special case of interactive induction called knowledge-base boot-

strapping has been discussed. This uses induction to draft a knowledge
base for subsequent refinement by the skilled and articulate expert.
The interactive induction approach has been viewed along a number

of lines: which features are relevant to the choice of knowledge acqui-
sition style, which tasks should be performed by expert and system
during the course of induction, and which kinds of subjective infor-
mation the expert can conveniently provide.

Finally, a number of areas that have not been fully explored here, but
seem critical to the generic approach, are the generation of statistics
concerning the applicability and confidence in a rule, the use of an oracle
for interactive validation and induction guidance, other modes of man—
machine interaction, and interactive induction methodologies.

Acknowledgements

This paper was drafted while the first author was studying at the Turing Institute,
Glasgow. We are grateful to BHP Steel International Group, Coated Products Division
for permission to publish details of the joint project and to Ross Quinlan for the use of
C4. We are also grateful to Steven Muggleton, Donald Michie, and others at the Turing
Institute for their insights into the pragmatics of inductive knowledge acquisition and
the Turing Institute for supporting the first author's visit to Turing and attendance at the
MI-12 Workshop, in Tallinn, Estonia, USSR in 1987.

REFERENCES

1. A-Razzak, M. (1987). Dealing with noisy data using the CX algorithm: User
documentation. Technical Report, Intelligent Terminals Ltd., Glasgow.

2. Westinghouse Electric's Nuclear Fuel Division (1985). A letter. Expert Systems, Jan.
p.20.

3. Al-Attar, A. Personal communication. Attar Software Ltd., Leigh, Lancaster, UK.
4. Boose, J. H. (1986). Expertise transfer for expert system design. Elsevier.
5. Buntine, W. L. (1987). Decision tree induction systems: a Bayesian analysis. In

Third Workshop on Uncertainty in Artificial Intelligence, AAAI, Seattle,
Washington.

6. Carter, C. and Catlett, J. (1987). Assessing credit card applications using machine
learning. IEEE Expert, 2 No. 3, 71-9.

7. Cleaves, D. A. (1986). Cognitive biases and corrective techniques: proposals for
improving elicitation procedures for knowledge-based systems. In Knowledge
Acquisition for Knowledge-Based Systems Workshop, Banff, Canada. International
Journal for Man-Machine Studies, 27 No. 2, 155-66.

8. Hayes-Roth, F., Waterman, D. A. and Lenat, D. (eds) (1983). Building expert
systems. Addison-Wesley.

9. Henrion, M. and Cooley, D. R. (1987). An experimental comparison of knowledge

136

BUNTINE AND STIRLING

engineering for expert systems and for decision analysis. In Sixth National
Conference on Artificial Intelligence, pp. 471-6, Seattle.

10. Kahneman, D., Slovic, P. and Tversky, A. (1982). Judgement under uncertainty;
heuristics and biases. Cambridge: Cambridge University Press.

11. Kodratoff, Y. and Tecuci, G. (1987). Disci PLE: an integrated expert and learning
system for weak theory domains. Unpublished report.

12. Hassan, T. Personal communication. Intelligent Terminals Ltd., Glasgow, UK.
13. Michalski, R. and Chilausky, R. (1980). Learning by being told and learning from

examples: an experimental comparison of the two methods of knowledge
acquisition in the context of developing an expert system for soybean diagnosis.
Policy Analysis and Information Systems, 4 No. 2,125-60.

14. Michie, D. (1986). The superarticulacy phenomenon in the context of software
manufacture. Proc. Roy. Soc. (A) 405, 185-212.

15. Michie, D. Personal communication, commenting on a case described in Problems
of computer-aided concept formation. In Applications of expert systems 2 (ed. J. R.
Quinlan) pp. 310-33. Addison-Wesley.

16. Muggleton, S. (1990). Inductive acquisition of expert knowledge. Turing Institute
Press in association with Addison-Wesley.

17. Muggleton, S. Inverting the resolution principle. This volume.
18. Muggleton, S. (1987). Report on savant task 31: investigation of machine learning

for the neuropsychological expert system. Unpublished report.
19. Muggleton, S. (1987). Structuring knowledge by asking questions. In International

Joint Conference on Artificial Intelligence, pp. 287-92, Milan.
20. Politakis, P. G. (1985). Empirical analysis for expert systems. Pitman, Boston.
21. Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, No. 1,

81-106.
22. Quinlan, J. R. (1987). Generating production rules from decision trees. In

International Joint Conference on Artificial Intelligence, pp. 304-7, Milan.
23. Quinlan, J. R., Compton, P. J., Horn, K. A. and Lazarus, L. (1987). Inductive

knowledge acquisition: a case study. In Applications of expert systems, (ed. J. R.
Quinlan) Addison-Wesley, London.

24. Riese, C. (1984). Transformer fault detection and diagnosis using Rulemaster by
Radian. Technical Report, Radian, Austin, Texas.

25. Sammut, C. and Banerji, R. B. (1986). Learning concepts by asking questions. In
Machine learning Vol. 2, (eds R. Michalski, J. Carbonell and T. Mitchell) Tioga,
Palo Alto, California.

26. Schachter, R. D. (1986). David: influence diagram processing system for the
Macintosh. In Second Workshop on Uncertainty in Artificial Intelligence, AAAI,
Philadelphia.

27. Shapiro, A. (1987). Structured induction in expert systems. Addison-Wesley,
London.

28. Stirling, D. A. and Buntine, W. L. (1988). Process routings in a steel mill: a
challenging induction problem. In AF87, Australian Joint Artificial Intelligence
Conference, (ed. J. Gero) North-Holland.

137

10

Models of Inductive Syntactical Synthesis

J. Barzdin, A. Brazma, and E. Kinber
Computing Centre,
Latvian State University, Riga, USSR

1. INTRODUCTION

When designing or comprehending different algorithms we usually begin
with considering a number of examples and then try to generalize from
them. The aim of researches in inductive synthesis is to understand and
formalize this process and eventually to design practical synthesizers.

Until the middle of the 1970's, the problems of inductive synthesis
were studied mainly on the recursive-theoretic level: given the sequence

f(0),f(1), ,),

of the values of a recursive function f it is necessary to restore an
algorithm computing f (surveys [1, 2, 3]). Unfortunately, researches on
this level did not produce many useful ideas for the construction of
practical synthesizers.
In 1976 A. Biermann and R. Krishnaswamy [4] proposed a method of

inductive synthesis from examples of full computation traces. This
method does not put any significant restrictions on the class of synthe-
sizeable programs leading to an exhaustive search. Furthermore, the
presentation of full computation traces is inconvenient for the user.
For practical synthesizers the class of synthesizeable programs appar-

ently should be limited. We have to look for inductive synthesis schemas
(models) applicable to sensible problems within which the synthesis is
effective and which are convenient for the user in the same time. Hence,
the process of synthesis can be split into two steps—selection of the
model appropriate for the given problem and the synthesis itself.
Here we will consider some of the inductive synthesis models

developed in Riga. In our approach (inductive syntactical synthesis) the
input information is regarded as a string of characters without any
semantics. Synthesis in such an approach is based on the detection of
purely syntactical analogies. The required program is synthesized in a
form of a grammar describing all possible computation traces (sample
computations), since to describe a program in fact means to give all its
sample computations. Such a grammar can be considered as some non-
traditional way of presenting a program (in fact, a program schema,

139

MODELS OF INDUCTIVE SYNTACTICAL SYNTHESIS

obtaining semantics only after interpretation of operators and predi-
cates).

2. DOTS EXPRESSIONS (J. Barzdin [8, 9, 11])

Let us consider the algorithm computing the greatest common divisor
(GcD) of two natural numbers X1 and X2. Let mod (X 1, X2) be the
remainder from whole division of X1 by X2. Then a possible way to
describe the GCD algorithm might be the example shown in Figure 1.

Input X1, X2
Let X3 : = mod(Xl, X2);
Is X3 = 0? Suppose it is not.
Let X4 : = (X2, X3);
Is X4 =0? Suppose it is not.
Let X5 : = mod (X3, X4);
Is X5 = 0? Suppose it is.

Return X4;

Figure 1. Sample computation of GCD.

Let us consider another example—a bubble-sort algorithm shown in
Figure 2.

Input A :Array (1 ...4);
If A(1) <A(2) then; else A(1) •-■A(2);
If A(2) <A(3) then; else A(2) •-• A(3);
If A(3) <A(4) then; else A(3) (-.A(4);
If A(1) <A(2) then; else A(1) +.A(2);
If A(2) <A(3) then; else A(2) 4-.A(3);
If A(1) <A(2) then; else A(1) 4-.A(2);

Return A;

Figure 2. Sample computation of bubble-sort algorithm.

From these descriptions (sample computations) evidently it is possible
to restore the respective general algorithms. Therefore, a description of
the algorithm by sample computations can be regarded as a program in
some non-traditional programming language. How can the semantics of
such a language be defined? A usual way to define the semantics of a
language is by translation to another language with known semantics.
Since here the intended language is that of examples, it is natural to
define its semantics by means of inductive inference rules, restoring the
general algorithms from their sample computations.
As a means for presenting general algorithms here we will use so-

140

BARZDIN, BRAZMA, AND KINBER

called 'dots expressions'. The basic construction in the language of a dots
expression is a dots term—any word of the following type:

(a1a2. an... /)1 b2. ba),

where al a2 . . . an and b1 b2 . . . bn are words in a given alphabet and
there exists such a c E N, that for all i E {1, , n} any of the two following
conditions holds: either a„bi E Z and la,— b,I= c, or a,= b,. For example

T1= (Al 0 0 A5),
T2 =00(1) 000A5(6))

are dots terms.
Substituting dots '000 in a natural way by the appropriate particular

string and removing parentheses ̀(' and ̀)' we obtain unfoldment unf(T)
of the given dots term T For example:

unf(T1) = Al A2A3A4A5,
unf(T2) = A0(1)A1(2)A2(3)A3(4)A4(5)A5(6).

Another basic notion is a dots string, which we obtain by concat-
enation of dots terms or embedding one term into another. For example

• = (Al 0.0 A5)(1B 0006B)C1
W2 =((A11 o 0 A13)00. (A31 A33))

are dots strings.
For dots strings an unfoldment can be defined. To get an unfoldment

unf(W) of the dots string W we gradually substitute all its dots terms
(starting with the outermost) by their unfoldments. For example, to get
unf(W2), we first substitute the outer term to get a dots string

(All 000 A13)(A21000A23)(A3100. A33).

Then, after substituting the rest of the terms we obtain

unf(W2) =A11Al2A13A21A22A23A31A32A33.

Dots expressions are (in a sense) dots strings depending on a variable
(we denote it by K). Thus, for example

E = (Al 000 AK)(1B 0 0 K + 1 /3)C1,
E2 =((A11 00 Al K) 0 (AK1 0 0 AK K))

are dots expressions. We define the value Val(E, Ko) of the dots expres-
sion E for the given Ko e IN, as the unfoldment unf(E(K0)) of the dots
string E (K 0), obtained from the dots expression E by substituting all the
substrings K + c(c E Z) by value Ko + c. Thus, for example, Val(EI, 4) =
unf(W1) and Val(E2, 3) = unf(W2). For an arbitrary Ko E NJ, a value Val(W,
Ko), is called a formal example of the expression E.
The essential element of the given model is the system of inductive

141

MODELS OF INDUCTIVE SYNTACTICAL SYNTHESIS

inference rules reconstructing general expressions by their formal
examples. The system has to be complete in the following sense: if the
formal example of the given expression is long enough, then the system
of inference rules synthesizes an expression equivalent to the given one.
The system of three rules: folding-up, standardization, and generalization
described below is proved to be complete for the dots expressions (A.
Brazma [7, 10]).
The rule of folding-up substitutes long 'regular' substrings of the type

a (1) a (2) .. . a (K 0) (Ko E IN) by corresponding dots terms (a(1) 000
a (K)). The rule of standardization expands maximally and shifts to the
right (in a sense) all dots terms of the given dots string. The rule of
generalization is applied at the very end (i.e. when to apply any other rule
is impossible) and it substitutes all 'large' numbers of the dots string by
expressions of the type K ± c(c E IN), where K is a variable. Thus, given
the string

A1A2A3A4A51B2B3B4B5 B6BC1,

the system synthesizes the following dots expression:

(A1000 A5)(1B 0 0 0 6 B)C1

From the sample computation of GCD given in Figure 1, the system
synthesizes a general algorithm of GSD (see Figure 3).

Input X1, X2;
(Let X3 : = mod(Xl, X2);

Is X3 = 0? Suppose it is not; .0
Let XK : = mod(XK — 2, XK — 1);
Is XK = 0? Suppose it is not;)
Let XK + 1 : = mod(XK — 1, XK);
Is XK + 1 = 0? Suppose it is;

Return XK

Figure 3. General algorithm of GSD.

Similarly, the system synthesizes the bubble-sort algorithm in Figure 4
by the sample computation of the bubble-sort algorithm given in
Figure 2.

Input A :Array (1 . . .K)
((If A(1) <A(2) then; else A(1) —A(2) 00
If A(K —1) < A(K) then; else A(K — 1) ++ A(K)) 000

(If A(1) <A(2) then; else A(1) »A(2) 000
If A(1) <A(2) then; else A(1) »A(2)));

Return A;

Figure 4. Bubble-sort algorithm.

142

BARZDIN, BRAZMA, AND KINBER

3. WHILE-EXPRESSIONS CONTAINING INTERPRETED
PREDICATES (x1 y1) A (x2 < y2) (E. Kinber)

Loop conditions in the expressions (programs) of this language are
interpreted predicates of the type x < y and their conjunctions; these
predicates do not occur in sample computations (in fact, they are
reflected implicitly and are shown in bold type). Thus,

(x:= 0) WHILE (x < y)D0(bxx+)

(x+ denotes the assignment operator x:= x +1) is a program in this
language, and

bOblb2b3b4b5b6b7

is its value (formal sample computation) for y = 7.
The standard sort-merge algorithm that merges ordered arrays

A[1:m] and B[1:n] to an ordered array C[1:m + n] can be written in
this language as follows:

R :Input :A :ARRAY (1 ... x0), B:ARRAY (1 ... yo)
C:ARRAY(1 xo + Yo)

(x:= 1, y:= 1,z:= 1)
WHILE ((x.-<...ro) A (y< 40))
DO(CASE: Is A(x) < B(y)? Suppose yes. Then

C(z) := A(x), x+ z+
Is A(x) B(y)? Suppose no. Then

C(z):=B(Y),Y+z+)
WHILE (x< xo)DO(C(z) := A(x), x+ z+)
WHILE (y< yo)DO(C(z):= A(y), y+ z+)

Output C.

The following sample computation naturally explaining the algorithm's
behaviour is a formal sample of the program R.

Input: A: ARRAY (1 ... 3), B : ARRAY (1 ... 5),
C: ARRAY (1... 8),

[Is A(1) < B(1)? Suppose yes.
Then C(1) :=A(1),

Is A(2) < 11(1)? Suppose yes.
Then C(2) : = A(2),

Is A(3) < 11(2)? Suppose no.
Then C(3) :=B(1),

Is A(3) < B(2)? Suppose yes.
Then C(4) : = A(3)]
[C(5) :=B(2),

C(7) :=B(4),

143

MODELS OF INDUCTIVE SYNTACTICAL SYNTHESIS

C(8):=B(5),]
Output C,

Special annotations (brackets [1) are used in this sample computation
to specify approximate loop boundaries; their specification is apparently
not difficult for a user.
A synthesis algorithm is developed which from a given system of

annotated sample computations completely describing the programs
behaviour, constructs the necessary WHILE-expression. It is proved
that if the annotations specify loop boundaries correctly then the
synthesis algorithm finds a program equivalent to the given system of
sample computations.
The synthesis algorithm handles an arbitrary sample computation in

polynomial time. However, the number of samples necessary for the
synthesis can be exponential. Nevertheless, if the number of loops in a
program is bounded, then the synthesis algorithm has a polynomial time
complexity. It is interesting to generalize these results to the case when
loop conditions are arbitrary Boolean expressions over predicates x y.

4. FOR-EXPRESSIONS CONTAINING INTERPRETED
FUNCTIONS (E. Kinber)

Programs in this language contain only FOR-loops. However, on the
other hand, interpreted functions of the type f(x, yi, y2, ..., y) -'x
satisfying some monotonicity conditions are allowed. Using this model it
is convenient, for example, to formalize the algorithm computing the
sum of the first x natural numbers:

T:Inputx;(y:=0,z:= 1)
WHILE (z x)D0(y + z, obtain y; I z +)

Output y.

The word

Input 5;
[0 + 1, obtain 1;
1+ 2, obtain 3;
3 + 3, obtain 6;
6 + 4, obtain 10;
10 + 5, obtain 15;]

Output 15

is, in particular, a formal sample computation of T explaining the
program's behaviour.
A synthesis algorithm is developed that, given a sufficiently 'rep-

resentative' sample computation, synthesizes an arbitrary program in

144

BARZDIN, BRAZMA, AND KINSER

this language. For instance, given the above sample computation, it syn-
thesizes the program T The algorithm works in polynomial (of the
length of input samples) time.

5. GENERALIZED REGULAR EXPRESSIONS (g.r.e.-s)
(A. Brazma, E. Kinber [5, 6])

The language of g.r.e.-s is a general model which includes (in a sense) all
models considered above (one can obtain these models by putting on
g.r.e.-s different restrictions and fixing classes of interpreted predicates).
G.r.e.-s are regular expressions over a set containing a set of variables
X = Ix, y, an alphabet A(il 11 X = 0), expressions x + c, x E X, c E N,
assignment operators xa = y, x := c, x,y E X, c E N, and operators x +
(adding of 1) and x - (subtraction of 1). Examples of g.r.e.-s are

P1 :(x:= 0, y:= 0)(ax+x U by+y)*
P2:(X:= 0) (ax+x(y:= x) (by+ y)*r.

To obtain a (formal) sample computation, say, for PI, we compute an
unfoldment of P1, for example,

P1:(x:= 0, y:= 0) ax + x ax + x ax + x by+ y by+ y
ax+xby+yby+yby±y

and then get the sample computation

ala2a3b1b2a4b3b4b5

from PI making obvious calculations.
Statements of the type

WHILE (P)D0(C)

and

CASE(P1 al a2, , Pk-• Ck),

in real programming languages correspond to the iteration (*) and union
(U), respectively.

For g.r.e.-s equivalence and inclusion problems are proved to be
solvable. On the other hand, all recursive functions can be expressed (in
a sense) by g.r.e.-s. A class of programs universal (in a sense) for all
programs is defined, and a syntactical synthesis algorithm is developed
for this class. The synthesis algorithm operates in a polynomial (of the
length of input samples) time. The notion of the universality is defined in
terms of closure with respect to a finite set of 'generalizing' trans-
formations over programs.
An interactive synthesis algorithm is constructed for a wide class of

g.r.e.-s: the algorithm from time to time can ask the user (formally the

145

MODELS OF INDUCTIVE SYNTACTICAL SYNTHESIS

oracle) whether various expressions are initial fragments of sample
computations. The interactive algorithm can also synthesize universal
programs.

6. THE GRAPHICAL EXPRESSIONS

The models of inductive synthesis considered above are linear in the
sense that programs and examples are one-dimensional objects (words).
The notion of a graphical expression is a generalization of dots expres-
sions to graphs. For example, the graph given in Figure 5a is a graphical
expression. Its value for a =3 and fi =5 is the graph given in Figure 5b.

(a) (b)

Figure 5. (a) Graphical expression. Its value for a = 3 and fi = 5 is the graph shown in
5(b).

For graphical expressions, a comparatively efficient heuristic method
and experimental system of inductive synthesis has been developed by
I. Etmane [12]. This system synthesizes a general algorithm (a graphical
expression) solving a linear equation system of i equations for arbitrary
/7, from the sample computations solving a linear equation system of four
equations.
The sample computations in the system of inductive synthesis con-

sidered are demonstrated directly on arrays monitored on the computer

146

BARZDIN, BRAZMA, AND KINBER

screen by means of a light pen; Such sample computation is clear and
visual: first we put on the screen input data, for example

A= (A(1) = 3, A(2) = 2, A(3) =4, A(5) = 1),

then we put on symbols of necessary operations (for example >, +-) and
then create the string 4(1) A(2)' by touching with the light pen
corresponding arrays A(1), ++ ,A(2); at the same time the values of A(1)
and A(2) on the screen are automatically interchanged.
This method allows us to present sample computations in many cases

more easily and conveniently than respective general algorithms. (This
approach was proposed first by A. Biermann [4])t.
A promising possibility for the application of inductive synthesis is

program optimization. The basic idea here is to unfold the loops (i.e.
substitute for them particular linear sample computations), then to
optimize the linear programs obtained (their optimization is much easier
than that of programs with loops). Finally we get back the loops from
linear programs using inductive synthesis.
In [8] a different application of inductive synthesis—the synthesis of

hypotheses about invariants of loops—is presented.
• Finally, it should be noted that translation from all the models con-
sidered to a traditional programming language is a purely technical
problem.

REFERENCES AND BIBLIOGRAPHY

1. Barzdin, J. (1974). Inductive inference of automata, functions, and programs.
Vancouver, an international congress of mathematicians, 2, pp. 455-60 (Russian).

2. Angluin, D. and Smith, C. H. (1983). Inductive inference: Theory and method.
Computing Surveys, 15, No. 3, pp. 237-59.

3. Klette, R. and Wiehagen, R. (1980). Research in the theory of inductive inference
by GDR mathematicians—a survey. Inform. Sci., 22, pp. 149-69.

4. Biermann, A. W. and Krishnaswamy, R. (1976). Constructing programs from
example computations. IEE Trans. Soft. Eng. SE-2, pp. 141-53.

5. Brazma, A. N. and Kinber, E. B. (1986). Generalized regular expressions—a
language for synthesis of programs with branching in loops. Theor. Comp. Sci. 46,
pp. 175-95.

6. Brazma, A. and Kinber, E. (1985). A language for non-linear program synthesis
containing while-loops. In An intelligence formalization: semiotical aspects, Kutaisi,
pp. 173-6 (Russian).

7. Brazma, A. (1986). The decidability of equivalence for graphical expressions. In
Theory of algorithms and programs, pp. 103-56. Riga. (In Russian.)

8. Barzdin, J. M. (1983). Some rules of inductive inference and their use for program
synthesis. Inf Processing '83, North-Holland, pp. 333-8.

tSee also J. S. Collins (1964). The processing of lists and the recognition of patterns
with application to some electrical engineering systems. Ph.D. thesis, University of
London.

147

MODELS OF INDUCTIVE SYNTACTICAL SYNTHESIS

9. Barzdin, J. M. (1983). An approach to the problem of inductive inference. In
Applications of mathematical logics, Tallinn, pp. 16-28 (Russian).

10. Brazma, A. and Etmane, I. (1986). Inductive synthesis of graphical expressions. In

Theory of algorithms and programs, Riga, pp. 156-89 (Russian).

11. Barzdin, J. M. (1981). On inductive synthesis of programs. Lecture Notes in Comp.

Sci., 122, pp. 234-54.
12. Etmane, I. (1985). An experimental system for the presentation of simple aids to

the synthesis of programs by examples. Latvian State University—Research
Memorandum, Latvia algorithm and program fund, No. IPO 017 (Russian).

148

OPTIMALITY AND ERROR IN
LEARNING SYSTEMS

.

A

•
• ̀•:',..7,-.1/4;•••:•••;',,

11

Deriving the Learning Bias from

Rule Properties

J. G. Ganascia
Laboratoire de Recherche en Informatique,
Universite Paris-Sud, France

Abstract

To guide learning, the 'learning bias' has to be defined with accuracy,
even if it has to be modified when the results do not match expectations.
This needs knowledge of the semantics of the various aspects of the
learning bias: representation formalism, description language, and
syntactico-semantical constraints applied to the learning assumptions. In
this paper we try to show these various aspects and demonstrate how a
new system CHARADE, provides some of these aspects with semantics,
'thanks to the introduction of the notion of 'system of rules'.

1. INTRODUCTION

Many authors have insisted on the importance of the • description
language and the generalization heuristics in induction. To illustrate this,
let us use an elementary example (Figure 1).
Even in such a simple example, the number of generalizations possible

for the scenes Si and S2 is very high, for example,

(1) there are two objects on top of one another;
(2) the lower object is a polygon;

(3) there are two objects and one of them is a square;
(4) there is a striped polygon.

Scene Si

Figure 1.

151

Scene S2

DERIVING THE LEARNING BIAS

Given this large number of potential intuitive generalizations, it is
necessary to choose the most adequate, that is, that which in a given
context will express best the common and relevant characteristics of the
examples. A quick examination of our own behaviour shows that, on one
hand, we are able to arrive at generalizations very quickly, even if they
turn out to be incomplete, and that, on the other hand, we never consider
all the generalizations possible. It seems as if, in a given situation, one
generalization forces itself upon us. On reflection we may, of course, be
able to question this first generalization and find a better one. Never-
theless, the number of generalizations considered never becomes very
large. Besides, we may note that only the generalizations relevant to the
goal are studied, and that in many cases, the difficulty lies more with the
formulation of the generalization than with the recognition of com-
monalities. Lastly, we note that we are able to assess the accuracy of a
generalization, whether we have formulated it or not. We thus have an
intuitive notion of generality which allows us to assess the value of an
intellectual piece of work, even if it is not our own, and we would
personally be unable to achieve it.
In the context of machine intelligence, if the generality relation is

independent of the subject who sets it forth, it must be possible to
formalize this relation. But as ideas, or rather the propositions de-
scribing ideas, can be translated into a formal language, the relation of
generality between ideas, or propositions, must also be translatable into
formal relations between formulas of the description language. Such a
formalization should cover all the possible relations of generality. Many
papers (Michalski 1983, Mitchell 1982, Plotkin 1970, Kodratoff and
Ganascia 1986, etc.) have shown the difficulties of elaborating a con-
sistent theory of generalization. Here we shall mention briefly a few
aspects of the generality relation, and their formal translation:

1. Constant variabilization if x is a variable, A a constant, P a predicate
and P(t1, t2, . . , tn) an atom then P(x, t2, , tn) is more general than
P(A, t2, , t„).
We shall note it as P(x, t2, , t„)< P(A, t2, , tn).

2. Use of the dropping rule if P1 and P2 are two propositions, P1 <P1
&P2.

3. Climbing in a conceptual hierarchy given an elementary conceptual
hierarchy of explicit relations of generality between plane figures
(Figure 4), POLYGON < SQUARE and thus the proposition (SHAPE=
POLYGON) & (COLOUR = RED) is more general than the proposition
(SHAPE = SQUARE) & (COLOUR = RED).

4. Extension of boundaries in the case of valued attributes on ordered
sets: if SIZE is an attribute which has values over the set of integers,
(SIZE 7) is more general than (sizE 37) and thus, (SIZE E [7,7]) <
(sizEE [— 5,5]).

152

GANASCIA

Also, whatever the formal theory of generalization chosen, an order of
priority as to the potential generalizations must be indicated. In fact, just
as man does not explore all possibilities, and is able to limit his search to
a minute part of the space of generalizations, even with the risk of omit-
ting some, a machine cannot explore the whole domain either.
Constraints are defined which, as they propagate in the space of
generalizations, limit the research combinatorics. This set of constraints
defines what T. Mitchell (1982) has named the 'learning bias'. Without a
learning bias there is, strictly speaking, no real induction as the whole
space of the potential generalizations has to be explored. On the other
hand, if the learning bias imposes too many constraints, it is then
possible that the best generalization is omitted. Moreover, the learning
bias directly affects the nature and the quality of the generalization.
Thus, it is frequently necessary to correct the learning bias through
taking into account the results and the behaviour of the learning program
(see Michalski 1983). An ideal learning program should itself be able to
define and modify its own bias automatically. Utgoff's work (1986)
moves in this direction when he studies the 'shift of bias for inductive
concept learning'. However, a closer view shows that the notion of
learning bias covers elements which widely differ; it includes the
formalism of the expression language, its structure, and common sense
syntax criteria (like the simplicity of a description). To be able to modify
the learning bias quickly and correctly, whether manually or auto-
matically, and to understand the exact scope of the modifications, the
meaning of such modifications must be clear. Now, if the addition of
descriptors always goes with some unintelligibility, conversely, the
imposition of syntactical constraints upon the form of the generalization,
such as the maximum number of terms in a conjunction (Michalski
1978), conforms only to very general intuitive notions without making
clear the precise semantics of such constraints. The aim of this paper is
to show that, provided we consider the learning process as the elabor-
ation of a theory, that is, a system of rules, and not merely as the general-
ization of expressions, it is then possible to establish clear semantics for
most classical syntactical constraints. At the same time, it is possible to
define new constraints to meet the properties of the theory to be con-
structed. This is what has been done in the CHARADE system (see below).

2. LEARNING BIAS

2.1. Role of the learning bias

As we have seen, the notion of learning bias has been frequently
mentioned in symbolic learning (Mitchell 1982, Utgoff 1986, Rendell
1986, Michalski 1983, etc.) to the point where it is possible to say that
there is no induction without a bias. As a matter of fact, the formal defini-
tion of the generalization defines a domain of potential generalizations,

153

DERIVING THE LEARNING BIAS

but, in symbolic learning, one cannot be satisfied with a mere formal
limitation of the generalization space, as the calculation procedures of a
good generalization must be constructed. Also, such procedures could
not make a comprehensive exploration of the space of potential general-
izations, because of its dimensions. Indeed, even if such an exploration
could be envisaged, most of the generalizations obtained would be
uninteresting, either because they would be unintelligible or because
they could not be made operational. The learning bias is, thus, part and
parcel of the data in a symbolic learning system, as, through imposing
more or fewer constraints on the exploration procedure, it determines
both the learning procedure behaviour and the nature of the induced
generalizations. More schematically, any procedure of learning by
detection of regularities can be represented as a search, constrained by
the learning bias, in a space of potential generalizations.

2.2. Phenomenological approach to the learning bias

As far as the bias appears in the form of constraints on an exploration
procedure, it displays similar characteristics. It can thus be, first of all,
more or less strong. Too strong a bias might reject all satisfying assump-
tions: one that is too weak will let the search wander over too vast a space
for full exploration to take place. There is thus a golden mean to be
found. In addition, there are qualitative differences between biases that
give qualitatively different results. For instance, in the example shown in
Figure 1, according to whether the 'attributes define shape, colour, or
geometrical relations and to the priorities assigned to them, so the results
will differ in quality. As the bias determines the quality of learning, it is
sound to consider how to modify a bias, after examining its results. Once
these have been taken into account, the bias can be strengthened or
weakened. Utgoff's work (1986) aims at automating a specific type of
modification, weakening by extension of the description language. It
might be advisable to consider other weakening techniques, and also
nothing is said in this work as to the strengthening of a bias. This paper
aims to establish semantics for certain aspects of the bias, with the hope
of automating its strengthening.

2.3. Nature of the learning bias

An empirical approach to symbolic learning has led us to distinguish
three different aspects of the learning bias: the representation formalism,
the description language, and the syntacto-semantic restrictions. As we
shall see here, specific constraints correspond to each of these features.
The first are related to the notion of generality, the second to the actual
limitation of a representation space, and the third to the exploration
procedure of such a space. A strong correspondence can be noted
between the learning model presented in the previous paragraph and the

154

GA NAS CIA

breaking down of the learning bias according to its various aspects. The
analysis can be refined to show that for each learning system input or
output there is a corresponding learning bias. To demonstrate this, let us
go back to the former model.
The formal definition of the notion of generality presupposes the

existence of a formalism to represent knowledge which directly affects
the nature of the generalizations that can be envisaged. Thus, in the case
of propositional logics, generalization by constant variabilization makes
no sense. The first aspect of the bias that we have isolated thus
corresponds to the first input of a learning system, i.e. the generalization
formal definition.
Once the formalism has been established, the elaboration of a learning

set presupposes the existence of a description language admitting this
formalism for its syntax. But the description language is structured;
relations between descriptors must be made explicit as axioms, logical
implications, or conceptual hierarchies. Moreover, hidden descriptors
may appear in the final generalization, and lastly, it is possible that some
descriptors present in the initial description may be deliberately
excluded from the final generalization. This leads us (see Mitchell 1978)
to define two description languages, a source language, where the
examples are defined, and a target language, in which final generaliz-
ations are expressed. Although these two languages are quite different
and the target language can be modified independently of the source
language, there is a close link between the structure of these two
languages which cannot be in contradiction. This does not change any-
thing as to the nature of the second bias which can be reduced to the
source language.

Lastly, the characterization of outputs must be translated into con-
straints on exploration procedure. Among such constraints, some only
imply a modification of the target language, through restriction or
extension of the source language, whereas others directly translate the
syntactical properties of the assumptions to be formulated. This aspect
of the bias is undoubtedly the easiest to comprehend. It is more suscep-
tible to iterative modifications than any other as it does not touch the
formulation of examples. Yet, in practice, it plays the major part as it
makes the properties of the learning system's output explicit. It is then
necessary that it should be clearly defined before each activation of the
learning process. Otherwise, either the exploration procedure will work
only on trivial cases, or it will implicitly limit the scope of the assump-
tions scanned, and no modification will be able to alter the arbitrary
nature of such implicit rules.
We will now show how CHARADE (See Ganascia 1987a and 1987b)

proposes semantics for certain syntax criteria of the bias; to do so, we
must first introduce the principle on which CHARADE is based.

155

DERIVING THE LEARNING BIAS

3. CHARADE: LEARNING WITH SYSTEMS OF RULES

3.1. CHARADE'S functionalities

Designed to facilitate the man-machine transfer of expertise, CHARADE
automatically builds up knowledge bases from the following:

(1) a description language covering a set of typed attributes and axioms
expressing the domain semantics;

(2) a set of examples described in this description language;

(3) the description of the expert system functionalities for which the
knowledge base is to be constructed.

CHARADE operates by empirical detection of regularities. Its main
characteristics are that:

1. It takes into account the semantics of the domain expressed as
axioms.

2. It can simultaneously generate certain rules and uncertain rules
modulated by a plausibility coefficient.

3. It can translate the functionalities of the expert system to be obtained
into generalization heuristics. The main original feature of CHARADE
is that it provides the generalization heuristics with clear semantics.

4. It constructs 'systems of rules' which can be directly used by com-
mercial inference engines, rather than simply isolated rules.

3.2. Construction of rules by generalization

To understand fully the incentives which have led to the implementation
of the CHARADE system, it is useful to recall the characteristics of con-
ventional systems of rule learning by generalization.

3.2.1. Generalization from the specific to the general

Michalski's INDUCE system (1983) is the most typical example of this
type of approach and can be schematically expressed as follows:

Given
— A concept C
— A set of examples El . . . E„ and of counter-examples
CE, . . . CEp of C

Stage 1: Construction of a generalization of El . En
discriminating CEI . CET,. Call it Eg

Stage 2: Construction of the rule Eg -■ C

Although this technique has been confirmed by major successes, it can
be criticized on, several grounds. In fact, generally, the rules constructed

156

GANASCIA

cannot be used directly by an inference engine, and whenever they are, it
is not without a major impoverishment of the resulting expert system.
Among the causes of such an impoverishment, we may quote:

(1) lack of rule chaining: A B, B C;

(2) the difficulty, or even impossibility, of introducing uncertainty;

(3) lack of consistency and economy for the knowledge base: the rules
are considered as isolated from one another;

(4) the frequent use of heuristics during the generalization process
which is not justified, as these heuristics have no semantics.

3.2.2. Generalization from the general to the specific

The building up of decision trees with the Quinlan method (1983) and its
numerous successors (e.g. Quinlan 1986) is a good representation of this
approach. To summarize, we start from:

— A set of classes exclusive from one another: C1 . . . Ck
— A set of examples E1 . . . E„ for each class Ci

Stage 1: Construct a decision tree to classify all the examples E.,
Stage 2: Generate rules from the decision tree.

Just as we have criticized the strategy of constructing rules by
generalizing from the specific to the general, we could also criticize the
consequences of moving from the general to the specific as follows:

(1) no rule chaining: A — B, B C;

(2) no accounting for the description language semantics;

(3) learning heuristics based on a numerical function;

(4) no accounting for the properties of the system of rules.

3.3. CHARADE: detection of regularities

To construct knowledge bases CHARADE empirically looks for regu-
larities in the learning set (Ganascia 1987a). To do so, the set of parts of
the learning set and the set of descriptor conjunctions are represented by
two Boolean lattices. Besides the economy of representation that they
offer, the properties of the lattices are used in the learning process to
facilitate the detection of regularities. In fact, a regularity corresponds to
a correlation empirically observed in the learning set. If all examples that
have a descriptor d1 in their description also have the descriptor d2, it is
possible to induce that d1 implies d2 in the learning set. The principle of
induction used in symbolic learning consists of a generalization of this
relation to the whole description space. Thus, these regularities must be
detected. Two functions D and C are used. The first one, D, goes from

157

DERIVING THE LEARNING BIAS

the descriptor's lattice to the example's lattice. To each description, it
associates the set of examples of the learning set covered by this
description. The other, C, relates to each subset of the learning set, that
is, to each element of the example's lattice, the set of descriptors present
in the description of all the examples. .These two functions are rep-
resented in Figure 2.

D(E):descriptors common to all examples of E

Space of examples Space of descriptors

C(d):set of examples covered by description d

Figure 2.

Example Let us imagine a learning set of three examples E1, E2, and
E3:

E1=d1&d2&d3&d4
E2= ill&d2&dAd5

E3= &d2&d3&d,t&d6
An empirical regularity can be detected between d1&d2 and d4., in
fact all the examples described by d1&d2 have also d4 in their
description. This is obtained with D and Cas follows:
DoC(d1&d2) = D (1E1,E 2,E 31) = d1&d2&d4

This technique detects rules which are certain; however, when build-
ing a knowledge base, uncertainty must also be detected and translated;
uncertainty may be due to either the poor quality of the learning set or
rules which are uncertain by nature.
To translate such uncertainties, plausibility coefficients are frequently

used. The latter are numbers in the range between +1 and —1 which
alter the conclusions of the production rules, —1 representing the false
and +1 the true.

It is easy to translate statistical regularities into production rules with
plausibility coefficients. It is sufficient to calculate conditional prob-
abilities with frequencies, and then to translate the result from the scale
[0,1] to the scale [—1, +1]. So, if D is a descriptor's conjunction, and if d'
is a descriptor, the statistical correlation between D and d' is expressed
by the following production rule: D d'(o)) where co = 2*Pr(d' ID) —1.
Example: to use once more the elementary example presented above,

one obtains, among all the regularities detected, the following rules:

158

GANASCIA

— Certain rule:
&d2-• ci4[DoC(d18442)= D({E 1,E2,E3}) = d1&c128zd4l

— Uncertain rule:
d3 (n = 0.33) [a. = 2*Pr(d31di &d2) — 1 = 2*2/3 — 1]

3.4. Exploration of the description space

Although we are able to detect and qualify regularities, we cannot detect
all possible regularities; on one hand, the exploration procedure would
be exponential (2n conjunctions of descriptors, n representing the
number of descriptors); on the other, the number of rules generated
would be so large that they could not be managed by a conventional
inference engine; last, such rules would be redundant. This would lead
both to useless duplications and to errors in the case of rules with
plausibility coefficients. There are thus two problems:

(1) how to limit the number of rules;

(2) how to limit the exploration.

Without describing in detail the mathematical formalism allowing the
operations that we introduce, we give belOw the general lines on which
the exploration procedure is based:

(1) use of the Boolean lattice structure of
— The set of parts of the learning set
— The description space (set of descriptors conjunctions)

(2) exploration from the GENERAL to the SPECIFIC;

(3) use of the properties of rules;

As far as the properties of rules represent the equivalence between
rules, their implementation allows suppression of useless rules. This
avoids redundancies at the same time that it limits the exploration of the
description space.
Among such properties some are related to exact rules, reflecting the

properties of logical implication. This is true for the two following
properties:

If a — b holds, then do not explore descriptions a&b& . . . , which
implies that in our example, d1&d3, d2&d3, d1&d2&d3 . . . are use-
less as d3- d1&d2

If C(a&b)gC(a&c) holds, then descriptions of the type a &b &c . . .
are useless.

Other properties are related to approximate rules; they reflect the
properties of plausibility coefficients:

If a -4 b(co) holds, then rules of the type a&... -4 b(ar), are useless
when co fa.'

159

DERIVING THE LEARNING BIAS

(4) Use of the properties of the system of rules to be constructed.

Just as we introduced the properties of rules to avoid exploration of
descriptions which, a priori, are not fruitful and to limit the creation of
rules to those which are really useful, we use the properties of the system
of rules that we want to build up. This is the most original aspect of
CHARADE as, thanks to such properties, it establishes clear semantics for
the generalization heuristics that are usually applied. At the same time, it
introduces new heuristics. Thus, these properties become the oper-
ational characteristics of the expert system that we want to obtain. In
fact, to build up a knowledge base, one must refer to the final state of the
expert system required. Otherwise, the former would be just a collection
of rules, many of them useless, some corresponding to random co-
incidences, others having no practical interest whatsoever. These
characteristics are used, sometimes, to create knowledge acquisition
tools to verify the relevance of the rules given by the user. An original
feature of the CHARADE system is that it translates these characteristcs
into constraints for the exploration procedure of the description space.
An illustration is presented below.

1. Goal of the rules system (diagnosis, classification.. .). In the case of
classification systems, if Co , C. are classes, whenever a rule of
the type a Ci is generated, descriptions more general than a (i.e.
a&...) are useless.

2. Minimum number of examples covered by the rule premise: if
card(C(a)) < v then descriptions more general than a (i.e. a& ...) are
useless as card(C(a& ...)) v.

3. A priori structure of the rule system when an expert system is con-
structed, the structure of the system of rules that we want to generate
is known a priori. Thus, for a therapeutic aid, whether in medicine or
vegetable pathology, one knows beforehand that the rules go from the
symptoms to the disease and then from the disease to the relevant
therapy (see Figure 3). With this hierarchy, it is then possible to leave
aside exploration of descriptions which correspond to a therapy and
the study of regularities going from the diseases towards the
symptoms or from symptoms to symptoms.

Therapy

Disease

Symptom

Figure 3. A priori structure of the rule system.

160

GANASCIA

More generally, it is possible to introduce all the properties P such
as when description D becomes useless because of the property P,
then D& ... is useless because of the same property.

4. PRESENCE OF THE LEARNING BIAS IN CHARADE

We now consider what is frozen and what can be parameterized in
CHARADE. Three essential aspects have been mentioned: the represen-
tation formalism, the source language, and the output properties which
are translated both into the transformation of the source language and
into the creation of syntactico-semantical constraints applied to the
formulation of assumptions generated during the learning process.
These are discussed below.

4.1. Representation formalism

In CHARADE, examples are represented as descriptors conjunctions.
Each descriptor is a triplet ((Attribute)(Selector)(Value)).
The generalization can then be limited to the intersection of de-

scriptors common to the various formulas, that is at the intersection of
triplets ((Attribute)(Selector)(Value)) composing each formula. Working
in propositional logics, there is no room for introducing the notion of
constant variabilization in the generalization process, but one would still
like to introduce the properties of descriptors or their mutual relations,
which seems impossible through a mere use of elementary operations on
sets.
For greater clarity, consider the two expressions El and E2:

El = (Size = 3) & (Shape = Square)
E2 = (Size= 5) & (Shape = Triangle).

Although no descriptor belongs simultaneously to both formulas, the
examples they refer to have many aspects in common: they are polygons,
they both contain red, and their size is between three and five. One
would like to emphasize these common characteristics in the general-
ization process. We shall demonstrate in the following paragraph that, if
we take into account the description language axioms, the intersection of
descriptors is sufficient to obtain such characteristics.

4.2. The description language

As stated above, this can be considered as two consistent description
sublanguages, the source language in which the examples are expressed,
and the target language into which the generalizations are to be trans-
lated. The former example shows that, when reduced to the sole triplets
((Attribute)(Selector)(Value)) present in the examples, the target
language is too limited to represent the generalization of El and E2.

161

DERIVING THE LEARNING BIAS

This means that the source language must be expanded and all the
implicit relations between descriptors must be made explicit.
Now, all these relations derive directly from the attribute's properties.

It is then sufficient to express the properties of each attribute when
defining the source language, to introduce them in the description of
each example. But this requires, as a prerequisite, an accurate definition
of such properties and of the modalities according to which they can be
introduced into the example descriptions. To do so, we chose to classify
the attributes according to their type, the type being related to the
domain of values which can be associated with an attribute, to a set of
selectors defining the modalities of such associations and to a set of
axioms creating logical relations between the various descriptors built
up with the help of an attribute.
In the example described above, two types of attributes can be

identified: the ordered type to which the attribute Size belongs and the
hierarchical type to which the attribute Shape belongs. Obviously, it is
possible to define as many types as desired, such as monovalued,
Boolean, etc., on the condition that they are properly described, that is
the domain of values, the set of selectors, and a set of axioms is defined
for each.
As an example, we give below the description of the two types

mentioned above:

Ordered type:
Domain: set provided with a complete order relation
Selectors: <, >,
Accepted selector: =
Syntactical transformation: (A= B)-+ (A B) & (A 4. B)
Axioms:
[v1 < v2] (A< v1) (A < v2)
[](A< v1)-. (A:41/1)
[] (Al < A2)&(A2 <v2) — (Al < v2) etc ...
Lower boundary: [optional]
Upper boundary: [optional]

Hierarchical type:
Domain: conceptual hierarchy
Selectors: ‹.
Accepted selector: =
Syntactical transformation: (A= v)— (A< v)
Axioms: [v2 = father(v1)] (A< v1)— (A< v2) {addition}

Once they are well defined, the types allow us to characterize each
attribute as a domain-associated type. Thus, Size is an ordered type for
the integers or floating numbers accepting a lower and an upper bound.

162

GANASCIA

Note that we establish in this case a distinction between the selectors <,
and > and the accepted selectors, =. The first ones are related to

the properties of attributes via the axioms, whereas the second ones are
considered only as a writing convenience. Each accepted selector is
associated with a syntactical transformation which rewrites this selector
containing descriptor into one or several descriptors containing the
selectors of the corresponding attribute. For instance, the descriptor
(Size = 3) will be rewritten as (Size < 3) & (Size 3). It is only after such
transformations have been made that it becomes possible to translate the
properties of attributes with the axioms; in this case, the fact that the size
of the two examples El and E2 is larger than three and smaller than five.
The Shape attribute is of a hierarchical type. The hierarchy of shape

will be represented by a tree as in Figure 4.

Form

Polygon

Triangle Quadrilateral Pentagon ...

/\ I
Isosceles ... Rectangle ... • •

Square ...

Figure 4. Hierarchy of shape represented by a tree.

•••

Cone-shaped

Ellipse

Circle •••

In the hierarchical types, the axiom is labelled 'addition', which means
that one adds to the example description all the conclusions that can be
drawn from the axiom. In other words, one goes up into the hierarchy to
introduce into the example description all properties inherited via the
hierarchy. In the example E2, the descriptor (Shape = triangle) will be
translated into (Shape < triangle) which will generate the descriptor
(Shape < polygon).
To generate all the descriptors that are implicitly linked to one of the

descriptors via an axiom, would be cumbersome, or even impossible in
some instances (for example Size) where they are infinite.

Instead, we propose to generate only the descriptors likely to play a
part in the generalization, that is, those that appear in other examples.
Thus, if the two former examples, El and E2, are present at the same
time, all the descriptors will be first transformed by the syntactical
transformations, so that the only selectors to intervene in the descriptors
will be those that are specific to the attribute to which they are related.

163

DERIVING THE LEARNING BIAS

Simultaneously with this first transformation, the axioms labelled
{addition} will be triggered..

After this first transformation El and E2 are described by:

El = (Size < 3) & (Size > 3) & (Shape < Square) & (Shape < Rec-
tangle) & (Shape < Quadrilateral) (Shape < Polygon)

E2 = (Size < 5) & (Size > 5) & (Shape < Triangle) & (Shape < Poly-
gon)

Note that these descriptions are not comprehensive as the relations
between descriptors do not appear. For instance the descriptor
(Size < 5): this descriptor ought to be present in both examples El and
E2, as this is a piece of information that was implicit in the El descrip-
tion. Axioms must be used so that it becomes explicit. This is done
during the second phase of transformation of the descriptions which
computes all the relations that exist between the descriptors present on
the lattice of examples. Once these relations have been calculated, the
lattice of examples is completed with each of them. Thus, in the case of
the descriptor Size, being of the ordered type, an axiom exists according
to which: [vl <v2] (A < v1) — (A < v2). Particularized for all the descrip-
tors of the learning set, this axiom will generate the relation:
(Size < 3) (Size < 5). As example El has (Size < 3) in its description, it
will be necessary to add (Size < 5). After such transformation, the
following descriptions of El and E2 are obtained:

El = (Size < 3) & (Size > 3) & (Size < 5) & (Shape <Square) &
(Shape < Rectangle) & (Shape < Quadrilateral) & (Shape < Poly-
gon)

E2 = (Size < 5) & (Size > 5) & (Size > 3) & (Shape 'Triangle) &
(Shape < Polygon)

For the latter, the descriptors common to El and E2 give a general-
ization gen(El, E2); in agreement with intuition one could have:

gen(El, E2) = (Size> 3) & (Size < 5) & (Shape <Polygon)

Without going into detail of the completion operations, it is possible to
note that, if limiting oneself to the descriptors present in the learning set,
there is neither a risk of explosion nor of making a loop. The axioms are
used only to define the set of relations existing between the target
language descriptors, without increasing it indefinitely.
Typing confers on the attributes precise semantics. But, and this is a

negative consequence, these semantics are frozen. One would like to be
able to choose a different point of view, or modify the generalization
context or change the attributes' typing according to need. Although
such a change of the attributes semantics is not automated, it is facilitated
by the distinction between source language and target language: any

164

GANASCIA

addition of axioms or any typing of attributes compatible with the source
language is readily accepted by CHARADE and will be taken into account
for the definition of the target language.
On the other hand, the first phase of completion of the example's

descriptions can be taken advantage of to add new descriptors which,
according to the expert's intuition, should play a part in the learning
process. It is sufficient to give the name of such descriptors as well as
their type and the procedures to obtain them. This is an important
advantage. An example of its usefulness was given to us by an archae-
ologist: the elaboration of archaeology catalogues must meet two
requirements: first to classify the objects newly registered, second, to
create object typologies which must be at the same time concise, clear,
and organized according to the major movements in history. The classi-
fication criteria vary according to authors and to eras; it is the task of the
archaeologist to define new, more relevant ones. Unfortunately, assess-
ment of the new criteria requires a considerable amount of work in
reconstructing the typology of all existing objects. This is where
symbolic learning systems like CHARADE are most efficient; it is only
necessary to add the descriptors corresponding to the new criteria in the
description of the registered objects, then to generate a new system of
rules and to compare it with the old one. Thus, in a real problem,
catalogues can take into consideration the shape, size, chemical com-
position, and ornaments in the classification of Bronze age axes. With
CHARADE it is possible to test the relevance of other descriptors deriving,
for instance, from set proportions. The latter have, up to now, been
mentioned only as assumptions, their assessment being beyond our
capability; but they might be linked to manufacturing constraints which
would be interesting to examine.

4.3. Exploration of the description space

We have seen that CHARADE empirically detects regularities in an intel-
ligent exploration of the description space. We have also demonstrated
how the constraints. on the exploration procedure derive from the
properties of the rules and rules system that we wish to build up. On one
hand, these properties represent a bias, in the meaning explained above,
as they determine the nature of the results of learning at the same time
that they constrain the induction procedure. On the other hand, they
have a clear meaning as they describe the operational characteristics of
the expert systems for which we intend to construct the knowledge base.
Thanks to the translation of the results properties as constraints on the

exploration procedure, the number of descriptions to be studied is
considerably reduced. The following example illustrates this.
Let D be the set of descriptors of the source language, with {d1, d2,.

d} (in} n descriptors linked together by logical implications: d1 d2, d2 d3,

165

DERIVING THE LEARNING BIAS

Such links are frequent whenever there is an order
relation between the values given to an attribute, for instance if 'height' is
a numerical attribute, (height 4 2) (height < 3) (height < 85).
Let K be the maximum number of descriptions to be explored to scan,

in the source language D, all the descriptions susceptible of giving rise to
a regularity. One would like to calculate K', the maximum number of
descriptors to be explored to scan the target language D U d1, d2, ,
dni.
In the case where no semantical relation would link di, d2, . . . dn, one

would have: K' = K*2", as on the basis of each description of the original
language, it would be necessary to derive 2" descriptions. But, as,
according to the constraints derived from the rules properties (Cf.
above), if a b, it is unnecessary to study descriptions of the type a&b,
none of the descriptions of the type dAdf& . . . need to be studied as
V(i,j) E [1,n] cliV di. Only the descriptions of the type A or A&d,
must be studied, A being a conjunction of descriptors of the source
language D. As a consequence, the maximum size of the space to be
explored is K' = K*(n —1).
Thus, the structuring of the description space together with the

provision of the properties of rules to be acquired minimizes the size of
the description space which must be explored absolutely.

5. CONCLUSION

To conclude, the formalization introduced in CHARADE permits a better
understanding of the learning bias semantics. This has three positive
consequences.

First of all, the fact that the meaning of the learning bias is now made
explicit precludes much wandering when adjusting the parameters that
trigger the learning procedure. Then, the description of properties of the
learning results characteristics as properties of rules systems provides
the learnt systems of rules with an operational value. Finally, the study of
the results of the learning procedure allows further refinement of the
triggering parameter, and, if need be, the addition of descriptors, which,
in the long run, should lead to the automation of the modification of the
learning bias.

REFERENCES AND BIBLIOGRAPHY

Ganascia, J.-G. (1987a). AGAPE et CHARADE: deux mecanismes d'apprentissage
symbolique appliqués cI la construction de bases de connaissance, these d'etat,
Universit6 Paris-Sud.

Ganascia, J.-G. (19876). Learning with Hilbert cubes, in Proc. EWSL, Bled, Yugoslavia.
Hayes-Roth, F. and McDermott, J. (1978). An inference matching technique for
inducing abstractions, CACM, pp. 401-11.

166

GANASCIA

Kodratoff, Y. and Ganascia, J.-G. (1986). Improving the generalization step in learning
in Machine Learning: An Artificial Intelligence Approach, Volume II, (eds R. S.
Michalski, J. G. Carbonell, and T. M. Mitchell), Morgan Kaufmann, pp. 215-44.

Michalski, R. S. (1978). A planar geometrical model for representing multi-dimensional
discrete spaces and multiple-valued logic functions. Research Report UIUCDCS
R-78-897. Urbana, IL. Dept. Comp. Sci., University of Illinois.

Michalski, R. S. (1983). A theory and methodology of inductive learning in Machine
Learning: An Artificial Intelligence Approach (eds R. S. Michalski, J. G. Carbonell,
and T. M. Mitchell), Morgan Kaufmann, pp. 83-134.

Mitchell, T. (1978). Version space: An approach to concept learning, PhD Thesis,
Stanford University.

Mitchell, T. (1982). Generalization as search, Artificial Intelligence, 18, pp. 203-26.
Plotkin, G. (1970). A note on inductive generalization, in Machine intelligence 5, pp.
153-63 (eds. B. Meltzer and D. Michie), Edinburgh University Press.

Plotkin, G. (1971). A further note on inductive generalization, in Machine intelligence
6, pp. 101-24 (eds B. Meltzer and D. Michie), Edinburgh University Press.

Quinlan, J. R. (1983). Learning efficient classification procedures and their application
to chess end games in Machine Learning: An Artificial Intelligence Approach (eds R. S.
Michalski, J. G. Carbonell, and T. M. Mitchell), Morgan Kaufmann, pp. 463-82.

Quinlan, J. R. (1986). Induction of decision trees, Machine Learning, 1, pp. 81-106.
Rendell, L. A. (1986). A general framework for induction and a study of selective
induction. Machine Learning, 1, 177-226.

Utgoff, P. E. (1986). Shift of bias for inductive concept learning, in Machine Learning:
An Artificial Intelligence Approach, Volume II (eds R. S. Michalski, J. G. Carbonell,
and T. M. Mitchell), Morgan Kaufmann, pp. 107-48.

Vere, S. A. (1980). Multilevel counterfactuals for generalizations of relational concepts
and productions, Artificial Intelligence, 14, pp. 139-64.

Vere, S. A. (1981). Constrained N-to-1 Generalizations, unpublished draft.

167

12

Error Tolerant Learning Systems

C. Sammutt
The Turing Institute,
Glasgow, UK

Abstract

We consider the task of a robot learning in a reactive environment by
performing experiments. A reactive environment is one where changes
occur in response to actions. Actors other than the learner may be
present in the world. The robot performs experiments by modifying the
environment and observing the outcome. These observations lead to a
collection of concepts which constitute a theory of the behaviour of the
environment, also called a world model. An experiment may either
increase confidence in a theory or refute a theory, but it can never prove
a theory. Therefore it is possible that the robot will develop an in-
accurate model of its world. This paper discusses a number of issues
involved in finding and repairing faults in a world model. It also
describes some preliminary results obtained from a learning program
called CAP.

1. INTRODUCTION

Learning systems can be divided into two categories: single-concept
learners and incremental learners. AQ (Michalski 1983) and in3 (Quinlan
1983) are examples of single-concept learning systems. They produce
one set of rules from one set of data and have no memory which permits
them to add to a knowledge base by further learning. Incremental learn-
ing systems remember the concepts which they have learned and can use
them for further learning and problem solving. Some examples are,
CONFUCIUS (Cohen 1978) and Marvin (Sammut 1981). These programs
build a model of their task environment through successive learning
experiences which require interaction with the environment.
The task that we consider in this paper involves a program learning to

control an agent in a reactive environment. This is an environment where
changes occur in response to actions. Agents other than the learner may
be present. As an agent accumulates experience, it constructs a world
model or theory of behaviour which can be used to predict the outcome

f Present address: Department of Computer Science, University of New South Wales,
Sydney, Australia.

169

ERROR TOLERANT LEARNING SYSTEMS

of events and to determine what actions may be necessary to solve
problems. In our discussion, a theory is a collection of concepts, where a
concept is a description of a class of objects or events.
The concepts which an agent can learn are determined by the events

experienced by that agent, so any concepts created on the basis of only a
small amount of experience are likely to be less accurate than concepts
developed on the basis of more extensive data. This is so because a small
number of instances of a concept may not contain sufficient information
properly to characterize the concept. Because of this, it may seem wise to
postpone concept formation until sufficient data are available. This may
not be possible for a number of reasons:

1. The agent may be required to perform some task even before it has
acquired enough experience to build an accurate model of its world.
For example, the system may be responsible for controlling the
attitude of a satellite and learning to compensate for changes in
atmospheric drag, changes in mass, and so on.

2. Unless the program builds a world model, it has no means of assess-
ing the usefulness of the information it gains. Thus it is impossible to
determine when ̀ sufficient information' for concept formation has
been accumulated. The program is also unable to employ a directed
search for further data since there are no criteria for evaluating the
usefulness of information.

A learning system which postpones theory formation can acquire data
either by passively observing the environment and other actors, or it may
perform its own, unguided actions. With passive observation, there is no
guarantee that the observations will be representative of the world unless
an agent is acting as a teacher and showing the learner 'interesting'
things. Thus it may be necessary to wait a very long time before sufficient
data for theory formation have been accumulated.

Active learning requires the agent to perform experiments, that is to
perform actions and note the changes in the world. A random choice of
an action is as good as any when there is no theory to guide the learner.
Unfortunately, random actions in a complex domain may produce
instances of many concepts, giving the learner a confused mass of data.
One of the benefits of constructing a partial theory while accumulating
data is that the partial theory will suggest what kind of data to look for. If
part of the theory can be identified as deficient then a strategy may be
devised to seek the information necessary to repair the theory.
For incremental learning systems which operate in reactive environ-

ments, the biggest problem is maintaining consistency in a knowledge
base which is constantly changing. Observation of the world can cause
new concepts to be hypothesized or existing ones to be revised. Thus the
world model, which is stored in the knowledge base, evolves over time.

170

SA MM UT

In the remainder of this paper we discuss a number of aspects of
knowledge base maintenance, including determining that an error in the
world model exists, finding the error, and repairing it. We also discuss
some work in this area including Hume's CAP program (Sammut and
Hume 1987), and related work.

2. PROBLEMS IN INCREMENTAL LEARNING

Let us now try to be more specific about the nature of the errors that can
be made by an incremental learning algorithm. First, because the system
is incremental and therefore responsible for building its own back-
ground knowledge, we assume that all concepts to be learned must be
describable in terms of concepts previously acquired. This assumption
leads to two possible errors:

1. The system may observe an event for which there is no prior knowl-
edge that will allow the system to make generalizations and thus
learn.

2. The system may observe an event for which there is prior knowledge.
However, the known concepts are too general to describe the concept
of which this event is an instance.

Thus, an inadequate knowledge base can result in either too specific or
too general a concept being learned. Interestingly, Shapiro (1981) notes
that analogous errors can occur in pure logic programs (as well as non-
termination). Later we will show how some of the techniques proposed
for debugging PROLOG programs can be used to 'debug' the knowledge
base of a learning system where concepts are represented by Horn
clauses in first order logic.
An example of an error introduced into the knowledge base by over-

generalization follows. Suppose the system is learning the preconditions
for pouring liquids into containers. First it must learn what a suitable
container is. This can be done by attempting to pour water onto a
number of different objects. The following sequence of actions illus-
trates some of the pitfalls of learning by experimentation:

1. Water is poured over a closed box. This fails because the water ends
up on the floor rather than in the box.

2. Water is poured over a cup and succeeds.

3. Water is poured over an open cylinder and this also succeeds.

What can explain these successes and failures? Any explanation which
the learning system attempts must be in terms of what it already knows. If
it knows about objects that have circular cross-sections, it may hypoth-
esize that the precondition for pouring a liquid into an object is that the

171

ERROR TOLERANT LEARNING SYSTEMS

object must have a circular cross-section, as do the cup and open
cylinder. Of course, this theory will fail if the robot tries to pour water
into a closed cylinder.
A more useful concept for learning about pouring is that of convex

shapes. However, the robot may not have learned this concept before
trying to learn about pouring. Therefore, it makes an over-general-
ization. Why should the robot attempt to learn something when it is not
prepared for it? An observation of the world may have brought its
attention to this task. For example, one mechanism that children use to
explore the world is to imitate adults, adding some variations of their
own. Observing what are assumed to be rational actors provides a good
focus of attention for learning; unfortunately, the actors may be
observed doing something more complicated than the child can under-
stand. That is, it has not yet learned all the background concepts
necessary to describe adequately what is seen. This is exactly the
situation in the case of the robot learning about containers into which it
can pour liquids.

2.1. Recognizing that an error exists

A world model is intended to predict the outcome of events in the world.
A theory is clearly incorrect if an unexpected outcome occurs. When the
robot pours water over a closed cylinder, it has a theory that predicts that
the water will remain in the cylinder. When the water ends up on the
floor, there is obviously something wrong. However, recognizing that an
error exists and knowing what it is are not the same thing. For example, it
is easy to see that a computer program has a bug, but locating the bug is
much more difficult.

2.2. Locating errors in a theory

A theory can be thought of as a network of interconnected concepts. The
shaded node, E, in Figure 1 may represent the concept of an object that
can contain liquid. This is needed to establish the preconditions for
retaining liquids in some container. This concept may in turn be neces-
sary for knowing how to make a cup of tea, for example. What happens if,
in the process of making a cup of tea, the tea is spilt on the table. Which
part of the world model was responsible for the mishap?
One way of locating the problem is to trace through the execution of

the plan that leads to the unexpected result, testing each concept that
contributed to the plan. That is, we debug the plan. In logic programming
languages, declarative descriptions can be executed as programs, thus
the distinction between a concept and a plan is blurred. This is very
helpful for our purpose since, by adopting a Horn clause representation
of concepts, we can profit from experience gained in writing intelligent
debuggers for PROLOG. Sussman (1973) developed a debugger for

172

SAMMUT

Figure 1. A theory is a network of concepts.

procedural progams. However, his program, called HACKER, used an ad
hoc approach which required a library of possible fixes to common
programming errors. We wish to minimize the number of assumptions
necessary to locate errors in a theory. Horn clause logic gives a uni-
formity of representation which allows us to break errors into only three
types.
' Shapiro (1981) describes a program, MIS, for detecting logic errors in
pure PROLOG programs. He claims that three categories are sufficient to

, characterize errors in pure logic programs:

(1) the program fails to terminate;

(2) the program returns an incorrect solution;

(3) the program fails to return any solution.

In the case of a faulty theory, return of an incorrect solution corresponds
to an over-generalization in the theory since a concept has been used to
describe an event that it should not be able to recognize. Failure to return
an answer corresponds to a theory that is too specialized since it has
failed to recognize an event it should have. Non-termination of a theory
can occur when recursive concepts are involved. We will not dwell on the
latter, but concentrate instead on theories that are too general or too
specific. Note that some concepts in a theory may be too general while
others are too specific.
To locate an error when an incorrect solution has been given (that is,

the theory contains an over-generalization) Shapiro's debugging algor-
ithm uses a method called backtracing to work backwards through the
failed proof of a goal, searching for the procedure that caused the failure.
In Figure 1, backtracing would begin with the last goal satisfied, that is, T
The debugger begins stepping back through the proof, i.e. down the dark
path to node Q, then P if necessary, asking an oracle if the partial
solution at each point is correct. If this is not true, then an erroneous

173

ERROR TOLERANT LEARNING SYSTEMS

clause has been found. Note that the algorithm assumes the existence of
an infallible oracle. In a reactive environment, the learning program can
do without an oracle since the program is able to perform experiments to
test a concept. Thus a failure suggests that the initial set of experiments
which resulted in the formation of the concepts along the solution path
was not extensive enough for at least one of the concepts. In the case of
making a cup of tea, experimentation may identify the concept that
describes preconditions for pouring liquids as faulty.
A concept that is too specific may 'prevent the program from being

able to form a plan to achieve some goal. That is, the logic program that
is supposed to satisfy the goal does not cover the initial conditions of the
task. An attempt at debugging the theory can only be made when a
correct solution has been seen, otherwise the learner has no indication
that the task really is possible. A correct solution may be found, either by
'mutating' the current theory in the hope that the goal can be satisfied by
the mutant, or by the learner observing another agent in the world
performing the task. Shapiro's debugging method for programs that fail
to produce an answer is equivalent to the second alternative, that is, the
oracle supplies the correct solution. The debugger again tries to work
backwards seeking clauses in the program that could have produced the
given solution. Once such a clause is found, its body provides further
goals that should be satisfied in order to arrive at the solution. The
debugger considers each of these intermediate goals to see if they can
also be produced by other clauses. Any goal that cannot be achieved
indicates where the program or theory is deficient.

It should be noted that more intelligent search methods can be used to
reduce the number of nodes tested. But while a method such as Shapiro's
is very useful, it assumes that the learning system is able to suspend its
current activities while it seeks the error in its theory. However, we noted
earlier that there are applications where this is an unaffordable luxury. If
the current theory works well in most cases and has failed relatively
infrequently, it may be better to defer a thorough attempt at debugging in
favour of persisting with the existing theory, while collecting information
which will eventually point out the incorrect concept. For example, if
over a period of time, all the concepts R, S, and T are noted to have
errors then the system may conjecture that all the failures have a
common cause and that there are only two concepts which could be that
cause. Thu .'s the search for the error in the theory has been reduced at the
cost of tolerating more failures. A difficult problem is to decide whether
it is more costly to stop and debug or to continue with some failures.

2.3. Correcting errors

After an erroneous concept has been detected what should be done to
repair it? In his MIS program, Shapiro reasoned as follows: when a

174

SA MM UT

program has failed to produce an answer, the program is too specific, so
to repair it the debugger should generalize the program in order to cover
the goals that cannot be satisfied. On the other hand, if a program
produces an incorrect answer, i.e. it satisfies a goal it shouldn't, then it is
too general and therefore the debugger should make the program more
specific. This excludes the goals that were incorrectly satisfied. In order
to perform these generalization and specialization operations, the
program must have a refinement operator, which, given a term, will
produce a set of terms that are minimally more specific than the original
one. Thus, by recursive application, the refinement operator defines a
language that is a subset of Horn clause logic. If MIS is to be able to create
a correct program successfully, the refinement operator must be capable
of generating the clauses necessary for the correct program. If the
refinement operator defines too large a language, then the search time
for the required clauses will be prohibitive. If the language is too small,
then it may not be possible to generate the required clauses.
What do generalization and specialization mean when objects and

events are represented by Horn clauses? A clause such as:

X 4-- AABACADAE

states that an object satisfying AABA CA D AE belongs to class X.
When a clause describes an instance of a concept, all the literals in the
clause are ground, that is, they contain no variables. A clause is gener-
alized by replacing constants by variables and by replacing predicates
such as A, B, C, etc, that describe some property of the object by other
predicates that have more relaxed restrictions on the range of values
which the property may assume. Specializing a clause introduces new
restrictions on those ranges of values. MB required that the predicates
Used in generalization and specialization were generated by a predefined
refinement operator. To avoid having to know too much about the
problem domain before starting, it is desirable to allow new terms to be
introduced as required by the data. Suppose our learning system does
not know a concept that will distinguish between a cup and a bowl on one
hand and a closed cylinder on the other hand. However, by experimen-
tation it is clear that there is some difference because the first two objects
retain liquid poured over them while the closed cylinder does not. The
learning system ought to be able to propose a new concept for objects
that retain liquid. A method capable of this behaviour was first proposed
by Sammut (1981). More recent related work by Muggleton is described
below.

Muggleton's DUCE (1987) relies on a set of operators to compact the
description of a set of examples to a simpler description. Each example is
represented by a propositional Horn clause. Some operators preserve
the equivalence of descriptions but reduce the number of symbols

175

ERROR TOLERANT LEARNING SYSTEMS

required, while others produce generalizations. There are six operators
in all and they are the basis for a method of anti-unification. Indeed, one
of the goals of this work was to produce a complete inverse of resolution
(see this volume). All six operators are necessary for the completeness of
the theory, but pairs of operators are sufficient for induction. We will
describe one such pair and refer the interested reader to Muggleton's
paper (1987) for the complete description. A first-order version of
DUCE, called Cigol (logiC backwards), has now been implemented
(Muggleton and Buntine 1988).

Absorption. Given a set of clauses, the body of one of which is com-
pletely contained in the bodies of the others, such as:

• X4-24AB AC AD AE
17+-A ABA C

we can hypothesize:

X— YADAE
Y—AABA C

In fact, this is the generalization rule used by Sammut (1981) in his
program, Marvin.

Infra-construction. This is the distributive law of Boolean equations.
Intra-construction takes a group of rules all having the same head, such
as:

X—B A C AD AE
X— AAB AD AF

and replaces them with:

B AD AZ
Z.-CAE
Z — A AF

Note that intra-construction automatically creates a new term in its
attempt to simplify descriptions. At any time during induction there may
be a number of applicable operators. The one chosen is the operator that
will result in the greatest compaction.
As a robot performs experiments, its experiences may be stored as

clauses representing observations. As this collection of clauses grows, it
can be compacted, using the DUCE operators. This has the effect not only
of reducing the storage cost of the information, but also of detecting
patterns and introducing new terms into the knowledge base. For
example, DUCE could easily detect the similarity of the cup and bowl
when liquid is poured over them. The intra-construction operator would

176

SA MM UT

introduce a new concept, that is, a new set of clauses whose heads have
the same principal functor.

2.4. Maintaining consistency

Detecting and repairing an error in a single concept is one thing, but
repairing an entire theory is another matter. Remember that in Figure 1,
we envisaged a world model or domain theory as a network of inter-
connected concepts. Using a Horn clause representation, the head of a
clause corresponds to a parent node and the goals in the body cor-
respond to the children. These goals match other clause heads and form
links to the rest of the network. Also in Figure 1, we imagined that one
concept, represented by the shaded node, E, was in error. When the
concept is repaired, what effect will that have on the concepts that
referred to the old concept? Since P, Q, R, S, and T refer, directly or
indirectly, to the erroneous node they must have been learned in the
presence of the error. Are they, therefore, also in error or will correcting
E alone correct them all?
When faced with the problem of ensuring the consistency of its

knowledge base, two strategies are available to the learning system.

1. After correcting E, the system may test each of the concepts that
depend on E. However, revising all of the concepts dependent on one
that has just been modified could involve a lot of work if the network
of concepts is very extensive.

2. The system may wait to see if any further errors show up. In this case,
each concept will be debugged as necessary. Although more econ-
omical this method requires a method for tolerating errors if the
program has been assigned a task that it must continue to perform.

It should also be noted that another source of errors in planning is
noise. When a learning system is connected to a real robot, it cannot rely
on the accuracy of measurements from vision systems, touch sensors,
etc. Thus a plan may fail because the knowledge base does not accurately
reflect the outside world. This being the case, the learning system must
not revise its domain theory prematurely since there may not, in fact, be
any errors. So the most prudent approach to error recovery is to delay
revision of a domain theory until sufficient evidence has accumulated to
suggest the appropriate changes.
Let us now give an outline of an error recovery strategy.

1. The robot learner is given a task which it is required to perform.
However, its domain theory may be incomplete or incorrect.

2. In the course of performing its task, the robot's plan fails.

3. If the robot is unable to proceed by adopting another plan then it

177

ERROR TOLERANT LEARNING SYSTEMS

must suspend working on its given task while it debugs its domain
theory.

4. If an alternative plan is possible (for example, by reordering goals)
then the new plan is attempted while storing the failed plan for future
reference.

5. The robot cannot assume that the failed plan is incorrect since the
cause of failure may have been due to noise. Therefore, as each plan is
executed, a history of its performance is maintained; this includes the
performance of the individual concepts that formed. the plan.

6. The accumulation of histories is input for a DUCE style of learning
system which effectively summarizes the performance of plans when
it forms new concepts by generalization.

7. Since the learning program may generate alternative descriptions for
the same concept, we must be able to resolve potential conflicts so
that the next time a similar plan is to be created, the appropriate
description is chosen.

In this final step, an assumption-based truth maintenance system (ATMS)
becomes useful (de Kleer 1986a, b, and c). Alternative descriptions of
the same concept represent different assumptions about the behaviour
of the world. An ATMS provides a mechanism for carrying forward
several lines of reasoning concurrently where each chain of inference is
based on different assumptions. When a contradiction is encountered by
one chain, it is knocked out and its assumptions invalidated. In our case,
different lines of reasoning are replaced by alternative domain theories
based on different concept descriptions. A failed experiment corre-
sponds to a contradiction.
When an experiment does fail, we must not invalidate the concepts

used in planning the experiment for, as mentioned earlier, the failure
may be due to noise. Instead, we note the circumstances of the failure
and augment the failed concept with a description of these circum-
stances. Several things could happen to the concept when this is done:

1. The description of the concept is modified to the extent that it
becomes correct. If an alternative, correct description already
existed, then the alternative domain theories of which these concepts
were components, converge.

2. After several failures, there is no generalization which covers the
circumstances of failure. In this case, the failures may be either
attributed to noise or to some phenomenon not yet known to the
system. In either case, nothing can be done.

An ATMS maintains the network of concepts that form a domain theory
and stores dependencies which, when errors are found, will indicate

178

SA MM UT

where other potential weaknesses in the theory lie. The ATMS also allows
a learning program to experiment with alternative domain theories.

3. CAP

Hume's Concept Acquisition Program (Hume 1985, Sammut and Hume
1987) is a current example of a program working in a reactive
environment. A reactive environment is one that responds to the actions
of the learning program. This can be a real or simulated environment. In
CAP'S case we have a simulated world that contains two robots. One is
under the control of the learning program which has little initial knowl-
edge of the world. This is referred to as the child robot. The second
robot already 'knows' about the world and can perform a variety of tasks.
This is referred to as the parent. The child learns about the world by
observing the parent performing some task and then using the obser-
vation to guide it in exploring its environment. Children often learn by
trying to imitate the actions of adults. That is, when a situation arises
which is similar to one where the parent has previously performed some
action, the child may attempt the same action. Since the state of the
morld is unlikely to be identical to the initial state when the parent began
its actions, imitation must also involve a degree of generalization.
To demonstrate how CAP works, we return to the example of learning

the preconditions for pouring liquids from one container into another.
Suppose the world consists of a solid cylinder and two cups, one with
some liquid in it, the other empty. The parent robot's task is to pick up
the full cup and pour the liquid contents into the empty one. At the
completion of this task, the liquid is no longer in the original container,
so it is not possible exactly to duplicate the same set of actions. If a child
robot wishes to imitate the parent then it must be satisfied with a partial
match of the starting conditions with some later state of the world. By
partial match we mean that two states can be considered similar if some
simple transformation can be applied to one state to turn it into the
other.
Figure 2 shows the 'before' and ̀after' states of the contents of cup A,

being poured into cup B. Suppose the child wishes to imitate the action
immediately after the parent has finished. A no longer contains the
liquid; however, by comparing the descriptions of the original state and
the final state we see that by substituting B for A we can use B as the
source of the liquid. Similarly, substituting A for B allows A to be the
destination.

Imitation based on a partial match is a useful way of learning. In this
case, because A and B can be used interchangeably, the child will have
learned the generalization that liquid can be poured into objects that are
cups. Imitation can be viewed as an experiment whose purpose is to

179

ERROR TOLERANT LEARNING SYSTEMS

A

A

Figure 2. Finding a partial match between states.

cup(A)

cup(B)

cylinder(C)

contains-liquid(A)

cup(A)

cup(B)

cylinder(C)

contains-liquid(B)

confirm or deny a generalization. For example, after swapping A and B
it can be predicted that the result will be that after pouring the liquid it
remains in A. If the prediction is proved to be true then the general-
ization is confirmed. Let us now see how another experiment will fail to
produce a predicted result but still yield useful information.
The partial match described above is obvious since one cup simply

maps onto the other. However, there are more subtle similarities present
in the scene. Assume that the concept:

circular-cross-section(X).- cup (X).
circular-cross-section(X)4- cylinder(X).

is known to the system. That is, an object has a circular cross-section if it
is a cup or a cylinder. This tells us that A, B, and C are all similar accord-
ing to at least one criterion. Therefore, another possible substitution
would allow C to be the destination of the pouring action. The previous
experiment tested the effects of pouring liquid into another cup, thus
permitting the generalization that any cup can contain liquid. Another
experiment, this time with the cylinder, tests the generalization that
objects other than cups can also contain liquids. Of course, this time the
liquid does not stay in the cylinder. Thus the generalization is shown to
be incorrect.
The child observes and records changes in the world as a sequence of

states, where each state is represented by a description (in first order

180

SAMMUT

logic) of the configuration of objects in the world. Suppose there is a
sequence,

So; Si; ...; SN

and a current state, S. Although each Si is a conjunction of atomic
predicates, it is also useful to think of it as a set of predicates. Thus, a
partial match can exist if there is some state, Sm: 0 < m < N such that

S n GS
That is, under some substitution a states S and Sm share common terms
in the state description. For example, if Sm consists of a full cup and an
empty one and S consists of a full cup and a cylinder then a partial match
exists with a substitution of the cylinder for the empty cup. However, in
order for this substitution to work, it must have been recognized that
cylinders and cups can be equated in some way. So before looking for a
match, the system must first elaborate on the state description by using
concepts, such as circular cross-section. This is done by treating the
concept description as a set of forward chaining rules as described in
Sammut and Banerji (1986) and is similar to the method used by
Muggleton in DUCE.
The partial match permits CAP to propose the following task: since

cups and cylinders are similar in at least one respect (they both have
circular cross-sections) they may also be similar in their ability to contain
liquids. Therefore, it should be possible to perform actions that will
result in a liquid being poured into a cylinder, just as had been done with
the cup (for which the cylinder has been substituted). This is the pre-
diction, namely, that it should be possible to create a sequence of states
in the world that corresponds to the sequence obtained through the
matching process. The attempt to achieve the sequence in the modelled
world is an experiment.

If an experiment has been concluded successfully, that is, the results
match the prediction, then the child has grounds to propose a general-
ization. When the attempt to pour a liquid into another cup succeeds
then it may be proposed that liquids can be poured into any cup. The
pouring action, A„ transforms a state S, into another state Si+1, written
as

A: S,-

Thus, S, contains the preconditions for the action A,. By generalizing Si
the applicability of the action is broadened. The next experiment, trying
to pour the liquid into the cylinder, generalizes S, even further. This
generalization is incorrect; however, it can be recorded as an exception
condition for action A,. As other exceptions are encountered for Ai they
may be combined with previously recorded cases. Thus, it is possible to

181

ERROR TOLERANT LEARNING SYSTEMS

build up knowledge about when an action can be used and when it
cannot.
Analysing why a particular substitution worked or did not work can

lead to further experiments. If a particular generalization was successful,
then it is worth looking for other objects covered by that generalization.
If an attempt is made to broaden the generalization by substituting
another object, and this fails, the difference between the object causing
the failure and the previously successful objects helps to define the
generalization more precisely. This refinement of the description can be
achieved by trying to make the unsuccessful generalization more specific
and performing another experiment.
An interesting side effect of this learning problem is that it provides a

simple criterion for clustering objects into new, unnamed concepts.
Objects form a cluster if they can be used in the same roles. Containers
made of glass or plastic can both hold water, a brick and a table can both
be used to support other objects. As an object is added to a cluster, a
generalization may be performed in order to arrive at a concise descrip-
tion of the cluster. To perform this generalization we again refer back to
DUCE'S operators.
CAP'S learning strategy can be summarized as follows:

1. The parent carries out a plan which results in a sequence of world
states being created.

2. The sequence is compressed and stored.

3. CAP attempts a partial match between the current state and a stored
state. The changes that result from the parent's actions are used as a
focus for the search for a partial match.

4. Since a stored state belongs to a sequence, the nearest partial match is
used to generalize the sequence starting from the matched state. The
sequence thus generated attempts to predict the result of the experi-
ment to follow.

5. A plan of action is inferred from the prediction sequence.

6. This plan is executed.

7. If the result of the experiment was as predicated then the pre-
conditions for the actions in the plan are generalized, otherwise the
exceptions conditions are generalized.

8. As long as there is nothing else to do (i.e. the parent is not doing
anything that should be observed) the increasingly distant matches
are used to create generalizations and experiments.

During experiments with CAP it was noted that the program could get
itself into a state where further progress became impossible. If the water
in all containers has been spilled then one of the basic ingredients of the

182

SA MM UT

experiments is missing. To remedy this situation we 'cheat', but in an
interesting way! Hume gave CAP the ability to keep more than one learn-
ing task running concurrently, so when progress is halted in one task, CAP
can switch its attention to another. As well as the parent demonstrating
how to pour liquid from one container to another, it also showed CAP
how to create water by using a tap as a source of water. Once CAP has
spilled all of its water and is unable to try pouring from one container
into another, it switches its attention to learing about the use of taps. Of
course, a side effect of this experimentation will be the creation of water
in a container. So when the program has finished playing with taps, it can
return to pouring water out of cups.
Sometimes, providing alternative tasks is not enough to prevent CAP

from being blocked from further learning. Suppose, after experimenting
with the tap, all containers have been filled, but the program still has not
completed learning about pouring from one container to another. Even
though its partial theory may tell CAP that any pouring action will result in
spilled water, it may still do it if there is nothing more sensible that can be
done. That is, if progress is impeded by a state that does not match
anything in the program's knowledge base, CAP will perform a random

, and probably illegal action in order to bring about a useful new state of
the world. In a sense we could say that the child throws a tantrum out of
frustration, thus obeying the maxim: 'When in trouble or in doubt, run in
circles, scream, and shout'!

4. RELATED WORK

Carbonell and Gil (1987) describe work on the PRODIGY general-
purpose planner. Given an incomplete and possibly incorrect plan, they
attempt to modify the plan when failures are encountered. An example
of learning the correct plan for crafting the primary mirror of a reflecting
telescope is given. (In fact, the example has the same characteristics as
the classic blocks world planning problems.) In common with our earlier
discussion, Carbonell and Gil point out that a plan which fails to meet
expectations must contain errors. When a failure occurs, the system
plans experiments to try to repair the domain theory. The theory should
contain knowledge of the preconditions of each operator, the conse-
quences, or post-conditions after applying each operator, and the
objects to which it is appropriate to apply each operator. In this domain
the operators include grinding, polishing, aluminizing, and cleaning
objects.
The kinds of faults in the domain theory that the PRODIGY work has

centred on are incomplete specification of pre- and post-conditions of
operators and lack of knowledge about operator interaction. Since the
domain theory is represented in first order logic, it is not surprising that

183

ERROR TOLERANT LEARNING SYSTEMS

the method for planning experiments resembles Shapiro's program de-
bugging in many ways. After a failure has forced the system to perform
some debugging, the program examines the current state of the world
and creates a new plan to achieve its original goal using the new domain
theory. A potential hazard which the authors note is that replanning can
cause a glass blank to be ground several times. If this is done too often,
no glass will be left. This is similar to the problem that CAP encounters
when it runs out of water during its pouring experiments.

5. CONCLUSION

We have discussed a number of problems related to incremental learning
in a reactive environment. In particular, a learning system must be able to
detect that it has an incorrect domain theory, and it must be able to
locate the error and correct it while maintaining a consistent knowledge
base. Some solutions to these problems have been suggested and an
implementation of the CAP incremental learning program was described.

Acknowledgements

My thanks to Dave Hume, who designed and implemented CAP and to the members of
the Turing Institute who have provided a stimulating environment in which to work
during my leave from the University of New South Wales. Also to the Institute of
Cybernetics of the Estonian Academy of Sciences for organizing a successful and
fascinating meeting in Tallinn. My work at the Turing Institute has been supported by
the Westinghouse Corporation.

REFERENCES

Carbonell, J. G. and Gil, Y. (1987). Learning by experimentation. In Proceedings of the
Fourth International Machine Learning Workshop (ed. Pat Langley), pp. 256-66,
Morgan Kaufmann, Los Altos.

Cohen, B. L. (1978). A theory of structural concept formation and pattern recognition,
Ph.D. thesis, Department of Computer Science, University of New South Wales.

de Kleer, J. (1986a). An assumption based TMS, Artificial Intelligence, 28, No. 1.
de Kleer, J. (1986b). Extending the ATMS, Artificial Intelligence, 28 No. 1.
de Kleer, J. (1986c). Problem solving with ATMS, Artificial Intelligence, 28 No. 1.
Hume, D.(1985). Magrathea: A 3-D Robot World Simulation, Honours thesis,
Department of Computer Science, University of New South Wales, Sydney, Australia.

Michalski, R. S. (1983). A theory and methodology of inductive learning. In Machine
learning: An artificial intelligence approach (eds R. S. Michalski, J. Carbonell, and T.
Mitchell), pp. 83-134. Palo Alto, Tioga.

Muggleton, S. (1987). Duce, an oracle based approach to constructive induction. In
Proceedings of the International Joint Conference on Artificial Intelligence, Milan. See
also this volume.

Muggleton, S. and Buntine, W. (1988). Machine invention of first-order predicates by
inverting resolution. In Proceedings 5th Machine Learning Conference. Kafumann, pp
339-52.

Quinlan, J. R. (1983). Learning efficient classification procedures and their application

184

SA MM UT

to chess end games. In Machine learning: An artificial intelligence approach (eds R. S.
Michalski, T. M. Mitchell, and J. G. Carbonell), Kaufmann, Los Altos, CA.

Sammut, C. A. (1981). Concept learning by experiment. In Proceedings of the Seventh
International Joint Conference on Artificial Intelligence, Vancouver.

Sammut, C. A. and Banerji, R. B. (1986). Learning concepts by asking questions. In
Machine learning: An artificial intelligence approach (Vol. 2) (eds R. S. Michalski, T.
M. Mitchell, and J. G. Carbonell), Kaufmann, Los Altos, CA.

Sammut, C. A. and Hume, D. V. (1987). Observation and generalisation in a simulated
robot world. In Proceedings of the Fourth International Machine Learning Workshop
(ed. Pat Langley), pp. 267-73, Kaufmann, Los Altos, CA.

Shapiro, E. Y. (1981). Inductive inference of theories from facts, Technical Report 192,
Yale University.

Sussman, G. J. (1973). A computational model of skill acquisition, Ph.D. Thesis, MIT
Artificial Intelligence Laboratory.

185

13

Use of Sequential Bayes with Class
Probability Trees

D. Michie
The Turing Institute and the University of Strathclyde,
Glasgow, UK

A. Al Attar
Attar Software Ltd,
Leigh, UK

Abstract

For building classifiers from data, rule induction has established itself as
an alternative to multivariate statistical approaches, including those of
'neural' computing. But modern rule-induction algorithms such as CART
and C4 have not yet found a fully satisfactory way of discriminating
logical from statistical forms of complexity in data. Systems of sequential
Bayes rules offer a less ad hoc basis for combining probabilistic with
rule-based approaches. In Evidencer, tree-structured rules are linked in
a PRospEcToR-like procedural hierarchy, and updated and processed
according to a thresholding regime adapted from Wald's sequential
analysis (1947). The resulting formalism steers a course between the
oversimplifications of PROSPECTOR and the complexity of full multi-level
Bayes, while retaining precise error bounds on decisions.
In comparative trials at the level of single-tree (unstructured)

induction, Evidencer holds its own against state-of-the-art C4. Struc-
tured induction of multi-tree models has yet to be subjected to trial.

1. INTRODUCTION

Bayesian theory axiomatically defines probabilities as 'degrees of
rational belief' (Good 1950), and hence offers attractions to the expert
system designer who requires a consistent way of treating confidence
and uncertainty.
The earliest use of Bayesian inference in knowledge engineering was

in the expert system PROSPECTOR (Duda, Hart, and Nilsson 1976).
PROSPECTOR 'learned on the job'—that is, run-time and hypothesis-
update modes were closely interwoven. Pagallo and Haussler (1988)
term such algorithms 'on-line'. In PROSPECTOR, goal-directed sampling
from the task environment of attribute-values was used to adjust weights

187

USE OF SEQUENTIAL BAYES

(in the form of Bayesian odds-multipliers) of hypotheses embedded in a
fixed multi-level inference structure. As a reference paradigm for such
systems we have in mind not PROSPECTOR itself, but a later PAscAL-coded
commercial shell, AL/x (Reiter 1980), in which separation of inference
engine from domain-specific knowledge-base was clearer, and which
expressed degrees of belief not as odds but as their logarithms—
`plausibilities'. In plausibility-based systems, amounts of evidence show
up as additive weights in place of the multiplicative 'factors' of odds-
based systems (see Good 1950,1983, and 1985).
In PROSPECTOR the simplified Bayes formula used for updating degrees

of belief lacked the structure necessary to take account of conditional
dependencies among evidence-sources, 'attributes' in rule-induction
terminology. Inductive learning of the complete logic of decision could
not in general occur, since inputs from attribute evaluation were com-
bined arithmetically via adjustable weights (as also occurs in the fitting of
multivariate regression equations), rather than via rule-based logical
relations. As is also the case in neural nets, only weights could be
learned. An analysis of neural net learning as a special case of multi-
variate statistical estimation has been made by Angus (1989).
Recent years have seen a variety of rule-based systems which derive

and modify tree-structured rules from training sets of data, freezing the
induced rule-trees for use as classifiers on further bodies of data; see
Hunt et al. (1966), Friedman (1977), Quinlan (1979), Paterson and
Niblett (1982, extension from logical to numerical attributes) and
Breiman et al. (1984, the CART algorithm: first full treatment of class
probability trees). In Pagallo and Haussler's terminology of machine
learning, these are 'batch algorithms'. Integration of separately induced
trees into a PRosPEcroR-like goal hierarchy was accomplished by
Shapiro and Niblett (1982) and further developed by Shapiro (1987)
into a generally applicable technique known as 'structured induction'.
Here the outputs of lower-level decision-tree procedures are propagated
up the hierarchy as inputs to higher-level procedures. But when these
take the form of probabilities rather than of logical values, it has not been
clear how they should be combined. Hence the scope of structured
induction has remained restricted to domains for which every problem
and subproblem is fully defined by a sufficient set of non-noisy
attributes. With the object of removing this restriction, this paper con-
siders the primary form of data-inducible tree-structured rule to be the
so-called 'class probability tree' (Carter and Catlett 1987) in which a
terminal node corresponds to a distribution of class-membership
frequencies rather than to a definite membership assignment. We show
how on a classical 'sequential Bayes' basis such trees can be derived from
data in the form of evidence trees and hierarchically processed at run-
time as semi-decision trees.

188

MICHIE AND AL ATTAR

We shall in general preserve a terminological distinction appropriate
to batch learning. We separate execute mode and edit (or 'learning')
mode. According to mode, we speak sometimes of a procedural hier-
archy (execute mode) and sometimes of an inference net (learning
mode), meaning respectively dynamic and static aspects of the same
thing. Likewise we speak either of decision procedures (execute mode)
or of decision structures (learning mode); of subgoal invocation (execute
mode) or of back-chaining links (learning mode). In Evidencer we do
not generally admit of learning at run-time. In learning mode a data-set
plays the role of a training set; in execute mode a data-set plays the role
of a test set. Except for the special case described later of 'interrupt-
revision' of a run-time classification, learning is off-line.
Thus use of training data to induce and update the structures that

define procedure bodies constitute the system's learning mode. Execu-
tion of the procedural hierarchy on test data characterizes the run-time
mode. With every procedure of the hierarchy is associated a hypothesis.
The given procedure's run-time goal is to evaluate this hypothesis for the
currently input data item and to output a belief-state. Arriving at a belief-
state for the hierarchy's top-level hypothesis is identified with solving
the top-level goal. A belief-state is obtained (see below) by comparing a
computed plausibility, with upper and lower plausibility bounds. The
problem of propagating probabilities from lower to higher levels is thus
circumvented in Evidencer. Outputs at every level are of type logical,
from the three-element set {'accepted', 'rejected', and 'undecided'}.
PROSPECTOR supported uncertain inference, allowing certainty factors

to be attached to the inputs and to the output of each procedure, and
addressing the propagation problem by a proprietary method for
calculating a certainty factor for the output of each procedure from the
certainty factors of the members of its input set. The method was open to
two objections:

1. Inputs that take the form of probabilities must in some way be
discounted in order to take account of their degrees of uncertainty.
These may arise, for example, from error in instrument readings, or
in approximations used in computing or in estimating their values,
including their inherently probabilistic status when such inputs are
themselves the outputs of other Bayesian procedures in the hier-
archy. To do this PROSPECTOR used an ad hoc interpolation procedure
which lacks formal justification.

2. Even without uncertainty of inputs, the combining method used,
sometimes called 'naïve Bayes', is only correct when all the data
item's attribute-values that are input to the procedure are mutually
independent with regard to their effects on the procedure's output

189

USE OF SEQUENTIAL BAYES

degree of belief. For general validity, 'conditional Bayes' must be
substituted.

The above two difficulties subsequently received corrective treatment
at the hands of various authors, culminating in Pearl's (1988) definitive
account of Bayesian inference nets. Evidencer resolves them in a differ-
ent way, namely by imposing as a constraint the knowledge engineering
principle of inferential transparency. This demands that the inference
net should be representative of the kind of conceptual complex that a
domain specialist might feasibly execute 'in the head' or might communi-
cate to a fellow-specialist.
In Evidencer arithmetic is accordingly minimized, and at run-time

virtually eliminated. Within a back-chained inference net each node
presents a separate induction problem, and from a training set of pre-
classified data-items, an evidence tree is generated. From each such tree
a thresholding process extracts a classification tree. At run-time the
latter is executed on new data so as to map each item to one of the classes
'accepted', 'rejected', 'undecided'. We set out below the Evidencer
algorithms, first for inducing the evidence tree, and then for extracting
the classification tree. We also refer to the latter as a 'semi-decision tree': •
only two of its three output classes are strictly decisions.

2. INDUCTION OF EVIDENCE TREES

In addition to the above treatment of inter-procedure parameter passing,
Evidencer makes a notional distinction between a supplier who
manufactures a generic evidence tree from whatever data he or she
regards as suitably representative, and a user. The latter derives from
the supplied product a run-time structure (the semi-decision tree)
customized to conform to his or her own data and to his or her own
estimates of the relative costs a different kinds of run-time classification
error. Otherwise the only substantive difference from the induction
methods of Quinlan and of Breiman et al. lies in the substitution of the
maximization of expected utility for entropy-minimization. Taking
weight of evidence as a 'default' utility (see Good 1979, 1989), we
replace the Quinlan—Breiman information measure by the expected
weight of evidence as the basis of tree growth. This quantity in Bayesian
probability theory is defined as follows.
Let P(H), P(H)/ (1 — P(H)), and log P(H)/ (1— P(H)) be respec-

tively the prior probability, the prior odds, and the prior plausibility of a
hypothesis H (strictly written H(x); the argument corresponds to the
data item currently input for classification). Then the posterior plausi-
bility of H in the light of a sampled event Els:

190

MICHIE AND AL ATTAR

the prior plausibility of H plus the weight of evidence in favour of H
yielded by the observed value of E,—or in symbols:

plaus(HIE) =plaus(H) + WH(E)

log P(E+IH)/ P(E+ !not H) if E= E+
where wH(E) = (1)

log P(E-1H)/P(E- 'not H) if E = E -

Denoting the two alternative values of wH(E) by w + , w, the expected
weight of evidence from observing E is

P(E = E+)x w+ + P(E = E-)x w- (2)

The 'sequential Bayes' extension considers the act of observing E's value
as the most recent in a sequence of such events, giving:

plaus(HI Ei, E 1)) = plaus(HIEl, Ei_ 1) + wH(E,REI, Ei_ i)),

or in words:

given a sequence of observations E1, E2, E„ H's plausibility after
Ei is equal to H's plausibility after Ei_ i incremented by the weight of
evidence contributed by E, conditional on the pre-occurrence of E1,

It is worth noting that H's plausibility after Ei must also equal H's plausi-
bility prior to El incremented by the total weight of evidence contributed
by the joint occurrence of El, E2, . . . E,. This equivalence is easily
verified from the axioms of probability. It should also be noted that
weight of evidence is equal to plausibility gain, and we shall use the terms
'evidence tree' and 'plausibility-gain tree' as interchangeable.
The above leads naturally to the following recursive algorithm (Michie

1989), which constructs an evidence tree from a training set C of pre-
classified attribute-value vectors. We relax the restriction to two-valued
attributes and allow multiple alternative outcomes, i.e. E1, E2, Em,
instead of just E+ and E..

Given a collection C of vectors, each pre-classified as H = true or
H =false:

1. If Cis empty then label C EMPTY; otherwise

2. if C is not partitionworthy, then label C with its plausibility, esti-
mated as

log (size {xlx in C and H(x)} + 1) — log (size {xlx in C and not
H(x)} + 1);

3. if C is partitionworthy, then

191

USE OF SEQUENTIAL BAYES

use a selectable attribute E to partition C into subsets,
those with value E' into CI,
those with value E2 into C2, etc.;

form a tree rooted in C and apply the same process to each
of the sub-collections C',... Cm.

The plausibility estimate of step 2 employs a smoothing device,
'Laplace's Law of Succession', to correct bias inherent in face-value
estimation from small-sample frequencies.
Next we define ̀partitionworthy'.

C is partitionworthy iff C is mixed and a significant candidate E
exists.

C is mixed iff at least one member is pre-classified as true and at
least one is false and the members of C do not have identical attri-
bute values.

E is a candidate unless it already occurs in the path from C to the
root, or unless its application to C would generate a subset of size
less than m (a user-supplied pruning parameter).

E is selectable iff it has the highest expected weight of evidence
among significant candidates.

Details of estimating prior probabilities and expected weights of
evidence from the training set, and also of what distinguishes 'significant'
members of a set of candidate Es, are in Michie (1989). Note that if, in
contrast to the less developed approach of that paper, we wish to
sharpen the distinction between evidence tree and semi-decision tree,
then the above algorithm can be simplified by declaring 'significant' to be
vacuous. At the expense of possibly growing an incoveniently ramifying
tree, all candidates Es are then treated as significant. The effect is to
concentrate pruning into the next phase (the 'setup operation'), in which
the evidence tree induced by the supplier is customized to the user's task
environment and economic criteria.

3. THE SET-UP OPERATION

Figure 1 illustrates the form of plausibility-gain, or 'evidence' tree
obtained by zeroing the root of the above process on the plausibility
scale. Its extraction from the training data, and conversion from plausi-
bility scale to plausibility-gain scale, marks the close of what may be
termed the 'laboratory phase'. The operational environment to which it
is to be transplanted may or may not reproduce the relative frequencies
of H and notH on which laboratory estimation of the prior log-odds was
based. Yet the evidential structure implicit in the tree may still be

192

+10.0

+8.0

+6.0

+4.0

+2.0

0.0

—2.0

—4.o

—6.0

—8.0

MICHIE AND AL ATTAR

+8.0

+6.0

+4.0

+2.0

0.0

2.0

—4.0

—6.0

—8.0

—9.0

—10.0

Figure 1. When read off against the left-hand scale, the above is an evidence tree
(plausibility-gain tree). After conversion to the right-hand scale it becomes a plausibility
tree (see text).

193

USE OF SEQUENTIAL BAYES

dependable. As can be seen from inspection of the Figure, the user is
supplied with a normalized version of the tree, rooted at the zero point of
the log-odds scale, an 'evidence tree'. To convert it into the semi-decision
form showed in Figure 2 the user does as follows:

Step 1 He or she re-roots the tree to the point on the plausibility scale
indicated by his or her own frequency data. This resembles the re-
calibration of an instrument on transfer from bench to field. The result is
a plausibility tree. In the example, prior odds of 1/100 are assumed.

Step 2 The user sets decision thresholds 01, 02 on the basis of a locally
constructed loss function. Such a function expresses on a utility scale the
expected loss when H is accepted but is false, and the expected loss
when H is rejected but is true. He or she may additionally allow for the
expected loss associated with an 'undecided' outcome (the cost of
referral). 01 and 02 are chosen so as to optimize the user's expected cost-
benefit.

Step 3 Branches intersected by 01 and 02 have their dependent nodes
defined as terminal (i.e. 'leaves') with attached labels ACCEPTED and

+4.0

+2.0

0.0

—2.0

—4.0

(a) Backward pruning
First stage: Decided nodes
become leaves

(b) Backward pruning
Second stage: nodes without
decided descendants becomes leaves

+4.0

+2.0

0.0

—2.0

—4.0

Figure 2. Successive results of backward pruning of a plausibility tree. The latter is
obtained (see Figure 1) by rooting the supplied evidence tree at a point on the
plausibility scale (right-hand of Figure 1) corresponding to the user's own frequency
data. (a) Semi-decision tree from threshold-pruning only of the plausibility tree.
(b) Semi-decision tree with three positive leaves, two negative leaves, and six undecided
leaves. OI = + 2.67, 02 = —4.33.

194

MICHIE AND AL ATTAR

REJECTED, all other leaves being labelled UNDECIDED. A further step of
backward pruning is then applied to the latter. Wherever a node is found,
all of whose terminal descendants are UNDECIDED, these descendants are
deleted and the UNDECIDED label moved back to the ancestral node.

Step 4 The resultant semi-decision tree is compiled into executable
code to form a run-time classifier. The tree is now ready to be run on new
data sampled from the same source as that used for the re-calibration
step.

Functionalities of the products of successive stages are as follows:

induction procedure: training sets evidence trees

set-up procedure: evidence trees x prior plausibilities x loss
functions classifiers

run-time procedure: classifiers x test sets classified sets

4. RUN-TIME

Although at run-time internal track is kept of plausibilities, semi-
decision trees are classifiers and return only belief states. With every
hypothesis is additionally associated a truth-value, 'true', 'false' or
'unknown'. A case, with belief-state set to ACCEPTED, UNDECIDED or RE-
JECTED and truth value 'unknown', may subsequently acquire a truth
value from a run-time oracle. For example, after forming the positive
belief-state, or 'opinion', that a loan applicant is creditworthy, the system
may later acquire information that the applicant has defaulted.

Conflict is resolved by the compatibility table of Table 1. 'Interrupt
revision' of this type is the only learning that occurs at run time, and is
effected by incrementation of exception lists attached to the leaves of
semi-decision trees. If during routine use it becomes desirable to gener-
alize over accumulated exceptions so as to revise the tree structure, re-
entry to learning mode may be made. An analogy for this model of expert

Table 1. Compatibilities between belief-states and
truth-values encountered at run time.

'true' 'unknown' 'false'

'accepted' yes yes no
'undecided' no yes no
'rejected' no yes yes

yes means compatible; no means incompatible. On re-entry to
learning mode the system can restore compatibility by revising
belief-states.

195

USE OF SEQUENTIAL BAYES

decision may be drawn with the hierarchical structure of subcommittees
in a judicial process. Each subcommittee is called on by its immediately
superior committee to furnish a considered opinion (belief-state) on
some aspect of the case. Opinions at every level, once issued, are allowed
to stand, and the top-level opinion, or 'verdict', is implemented. So
although the internal process of each committee is known to involve
uncertainty, its output—H accepted, H rejected, H undecided—is
treated as firm, i.e. as a 'finding'. Subsequently truths at variance with the
top-level verdict, or with a subcommittee finding on which it was
predicated, may become known to the implementing authority and result
in ad hoc rectifications (for example, judicial pardons in criminal law).
Accumulation of many such cases may, moreover, lead to procedural
revision. This can be achieved if the errant committee 're-enters learning
mode' and reviews the rectified file.

Associating an exception list with each computed decision is similar to
the 'rote' of a Pop-2 memo function (Michie 1968, van Emden 1972). A
revised value entered into the list supersedes the value that would be
computed by the rule on an identical case. A similar facility is found in
the Mathematica system (Wolfram 1988).

In summary, PRospEcToR-like propagation of probabilities is replaced
by the more transparent process of passing discrete-valued belief-states,
or 'opinions'. Procedural nets whose nodes are Bayesian semi-decision
trees support run-time calculations on a logical rather than arithmetical
basis, yet maintain an approximation to probabilistic reasoning. As a
simulation of expert inference this offers a way of doing structured
induction in probabilistic, noisy, and underspecified domains. Error
bounds are maintained in the form of the 01/02 threshold.
How well does it work in practice? A complete answer requires tests

of the following:

(1) at the level of the individual tree: use of the expected weight of
evidence in place of entropy and of Wald-type thresholding as a
basis for pruning;

(2) at the inter-procedural level: propagation of outputs of uncertain
inference in the form of 'opinions';

(3) (perhaps most controversial) the presumption that logical and
evidential dependencies in a population are less labile under demo-
graphic shifts and other mutabilities of sampling than the fre-
quencies themselves. It is this presumption which underlies the user-
customization process described under 'set-up procedure'.

5. INDUCTION OF TREES FROM BENCHMARK DATA-SETS

The above algorithm for building individual trees (with the pruning

196

MICHIE AND AL ATTAR

parameter m set to 1) was implemented using a research version of the
commercial inductive package XpertRule (Attar Software Ltd 1988).
'Significant candidates' in the description of the algorithm given earlier
are those yielding a 2 x n X2 exceeding the level corresponding to
P < 0.05. The implementation was generalized to cater for multi-valued
logical attributes and for numerical attributes. The treatment of the latter
was essentially that of ACLS (Paterson and Niblett 1982) as also found in
CART and C4 (Quinlan 1986), with substitution of expected weights of
evidence for entropy criteria. For comparing the Evidencer algorithm
with C4, the latter was simulated in XpertRule using the minimum-
entropy criterion for attribute selection according to the gain-ratio
regime described by Quinlan in the above-cited paper. Six test problems
were used, varying in number and types of attribute, number of outcome
classes, and size of training set, as shown in Table 2.

Table 2. Characteristics of seven problems used to compare the
attribute-selection criteria of Evidencer and C4.

Description of problem Number of Type of Number of Size of
attributes attributes classes training set

Problem 1.
Engineering fault diagnosis 20

Problem 2.
Autolander 6

binary 8 8
logical

mixed 2 15
logical

Problem 3.
Identifying silhouettes 9 numeric 8 71

Problem 4.
Expenses claims 5 logical & 3 37

numeric

Problem 5.
Credit assessment 1. 20 mixed 2 650

logical

Problem 6.
Credit assessment 2. 20 mixed 2 1200

The problems were mostly taken from public-domain documents.
References are:

Problem 1: A-Razzak, Hassan and Ahmad (1986, 1988). Problem 2:
Michie (1986). Problem 3: Shepherd (1983, 1985). Problem 4: Paterson
and Niblett (1982). Problems 5 and 6: Al Attar (1989).

197

USE OF SEQUENTIAL BAYES

6. RESULTS

1. Domain with binary logical attributes. A well documented faults table
was used. This problem has 20 logical attributes representing diag-
nostic tests. Each test has the values Y, N or -, and there are eight
possible faults. The problem is a good example of the use of rule
induction to compress tables (logical reduction). To put it into
suitable form for tests involving Evidencer, the domain was split into
eight sub-domains, each with the same attributes but only two out-
comes: fault1 versus the rest, fault2 versus the rest etc. Trees were
produced for each of the eight sub-domains. In every case the
Evidencer-produced tree and the C4-produced tree were identical.

2. Domain with multi-valued logical attributes. The Autolander prob-
lem was used which contains a mixture of binary and multi-valued
attributes. Evidencer and C4 produced the same 14-leaf tree.

3. Domain with numeric attributes. The task involves identifying the
type of chocolate from numeric shape attributes of silhouettes (area,
aspect ratio, circularity, etc.). Nine numeric attributes were defined
and there were eight classes of chocolate. Again, the domain was split
into eight sub-domains, each classifying one type of chocolate against
the others. The eight decision trees produced using Evidencer were
identical to those produced using C4. Two of the trees are repro-
duced below.

Problem brandy

1 circlty
2 < 78.0: other (50)
3 > = 78.0: area
4 < 115.5: other (9)
5 > = 115.5 prornd
6 < 56.5: other (2)
7 > = 56.5: bx2ness
8 < 76.0: other (1)
9 > 76.0: brandy (9)

Problem hazel

other (2)
hazel (8)

hazel (1)
other (20)

1 asprat
2 < 78.5: other (40)
3 > = 78.5: prornd
4 < 57.5: boxness
5 < 64.0:
6 > = 64.0:
7 > = 57.5: bx2ness
8 < 76.0:
9 > = 76.0:

198

MICHIE AND AL ATTAR

4. Domain with both numeric and logical attributes. Using the 'expense
claims' problem, C4 produced a 26-node tree. Evidencer produced
an almost identical tree containing 28 nodes, two being 'empty'
leaves.

5.-6. Multivariate domains with noise. These two domains did not
support the induction of decision trees with 100 per cent accuracy,
the attributes being insufficient to determine the problem fully.
Training sets were constructed by random sampling from files of data
acquired in the field. They were thus rather typical of data analysis as
encountered in science and industry.

The first credit domain had the outcomes GOOD and BAD credit risk and
20 attributes of credit applicants were used. A class probability tree was
extracted from a training set of 650 and tested on a set of 280. The
second credit problem was similar but had more examples, 1200 in the
training set and 600 to test against. Results from the latter are shown
below:

Induction method Size of pruned tree Accuracy
C4 29 nodes 64.6%
Evidencer 22 nodes 66.6%

7. DISCUSSION

As far as concerns comparison of Evidencer's and C4's attribute-
selection criteria, performance on the tests showed little to choose
between them. In some cases results were identical. In others some small
marginal advantages of accuracy or rule-compactness were observed
either in one direction or the other. We conclude that the 'expected
weight of evidence' criterion satisfactorily solves a long-standing prob-
lem attending the entropy-minimization principle. This problem is that
the use of the principle tends to bias selection in favour of multi-valued
attributes in problems of mixed attribute types. It was in order to patch
this that Quinlan introduced the 'gain ratio' adjustment. It can be argued
that such patches cannot be other than ad hoc. The underlying problem
is deeper, and stems from reliance on an undifferentiated conception of
entropy as generalized uncertainty, rather than isolating the component
of uncertainty which specifically concerns prediction of the outcome
class—see Pagallo and Haussler's (1988) discussion of 'mutual infor-
mation' in this context. In our view this point is fundamental and
constitutes strong and sufficient reason to prefer the new criterion to
Quinlan's. Further strength is lent by the circumstance that the gain ratio
adjustment itself lacks clear justification. Sequential Bayes does not.

199

USE OF SEQUENTIAL BAYES

In the matter of backward pruning using decision thresholds, a pre-
liminary trial was made in Problem 5. In this problem no use was made of
x2. In the resultant absence of forward pruning, it was possible to make
sufficient test of the 01/02 backward pruning scheme to suggest that the
Wald sequential cut-off method is safely transferable. Beyond that we do
not care to generalize until full implementation of the complete
algorithm described in this paper. Comparative trials can then be
addressed to industrial-strength applications sufficient to stretch
Evidencer's innovative features.

Acknowledgements

This work is indebted to facilities and support from Attar Software Ltd (An) of Leigh,
Lancs, UK, and from the Turing Institute, Glasgow, UK. By arrangement with ASL,
Mr Haider Al Attar modified XpertRule to create the research version described, and
ably assisted in its use in the Mathematics Department of the University of Strathclyde
to support one of us (DM) in teaching a 4th-year course in Al Data Analysis. We are
also grateful to Dr Igor Kononenko for allowing us sight of his writings in advance of
publication.

REFERENCES AND BIBLIOGRAPHY

Al Attar, A. (1989). Personal communication.
Angus, J. E. (1989). On the connection between neural network learning and
multivariate nonlinear least squares estimation. Internat. J. Neural Networks. 1, pp.
42-6.
A-Razzak, M., Hassan, T., and Ahmad, A. (1986). ExTran 7 User Manual, Version 7.2.
Intelligent Terminals Ltd (revised 1988), Glasgow.

Attar Software Ltd (1987). XpertRule (user manual), Attar Software Ltd, Leigh, Lancs,
UK.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and
Regression Trees. Wadsworth and Brooks/Cole Advanced Books & Software,
Monterey, CA.

Carter, C. and Catlett, J. (1987). Assessing credit card applications using machine
learning. IEEE Expert, 2 No. 3, pp. 71-9.

Duda, R. 0., Hart, P. E., and Nilsson, N. J. (1976). Subjective Bayesian methods for
rule-based inference systems. Proc. National Computer Conf. (AFIPS Conf. Proc. Vol.
45), 1075-82.

van Emden, M.-H. (1974). LIB memo functions. In POP-2 Program Library
documentation. School of Artificial Intelligence, University of Edinburgh.

Friedman, J. H. (1977). A recursive partitioning decision rule for nonparametric
classification. IEEE Trans. Computers, C-26, pp. 404-8.

Good, I. J. (1950). Probability and the Weighing of Evidence. Griffin, London.
Good, I. J. (1979). Studies in the history of probability and statistics. XXXVII A. M.
Turing's statistical work in World War II. Biometrika, 66, pp. 393-6.

Good, I. J. (1983). Good Thinking: the Foundations of Probability and its Applications.
University of Minnesota Press, Minneapolis.

Good, I. J. (1985). Weight of evidence: a brief survey. In Bayesian Statistics 2 (eds J. M.
Bernado, M. H. DeGroot, D. V. Lindley, and A. F. M. Smith). Elsevier
(North-Holland).

200

MICH1E AND AL ATTAR

Good, I. J. (1989). Introductory remarks for the article in Biometrika, 66 (1979), "A. M.
Turing's statistical work in World War II" (draft 9). Personal communication of a
typescript to be published.

Hunt, E. B., Marin, J., and Stone, P. (1966). Experiments in Induction. Academic Press,
New York.

Michie, D. (1968). 'Memo' functions and machine learning. Nature, 218, pp. 19-22.
Michie, D. (1986). The superarticulacy phenomenon in the context of software
manufacture. Proc. Royal Society (A), 405, pp. 185-212.

Michie, D. (1989). Personal models of rationality. Turing Institute Research
Memorandum -88-035. Also in Jour. Statist. Planning and Inference (Special Issue on
Foundations and Philosophy of Probability and Statistics), 21.

Pagallo, G. and Naussler, D. (1988). Feature discovery in empirical learning. Research
Memorandum UCSC-CRL-88-08, Computer Research Laboratory, University of
California at Santa Cruz.

Paterson, A. and Niblett, T. B. (1982). ACLS Manual. Intelligent Terminals Ltd,
Edinburgh.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San
Mateo.

Quinlan, J. R. (1979). Discovering rules by induction from large collections of examples.
In Expert Systems in the Micro-electronic Age (ed. D. Michie), pp. 168-201.
Edinburgh University Press, Edinburgh.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, pp. 81-106.
Reiter, J. (1980). AL/X User Manual, Intelligent Terminals Ltd, Edinburgh.
Shapiro, A. D. (1987). Structured Induction in Expert Systems. Addison-Wesley.
Shapiro, A. D. and Niblett, T. (1982). Automatic induction of classification rules for a
chess endgame. Advances in Computer Chess 3 (ed. M. R. B. Clarke), pp. 73-92.
Pergamon, Oxford.

Shepherd, B. (1983). An appraisal of a decision-tree approach to image classification.
IJCAI-83, pp. 473-6 (Karlsruhe).

Shepherd, B. (1985). Computer induction versus statistical classifiers in the domain of
shape recognition. M. Phil. Thesis, University of Edinburgh.

Wald, A. (1947). Sequential Analysis. John Wiley & Sons, Inc., New York; Chapman &
Hall, London.

Wolfram, S. (1988). Mathematica: a system for doing mathematics, Addison-Wesley.

APPENDIX A—KONONENKO'S BAYESIAN NETS

In an article to appear, Kononenko (19896) shows that the 'nave' Bayes
classifier can be naturally implemented in a neural net. In a recent
conference contribution (1989a) he describes an implementation
whereby each iteration of such a net represents a single inference in a
chain of inferences. In thus conferring on neural nets some of the
properties of an expert system shell, expressive power is lifted above the
level of the simple naïve Bayes classifier, reverting to it when iterations
are reduced to zero. Some such 'lifting' also results from incorporating
the standard Rumelhart and McClelland 'hidden layers' in neural net
architectures. The latter results in a scheme for fitting attribute-weights
to data which Angus (1989) has shown to be equivalent to a particular
way of performing classical least-squares non-linear multivariate

201

USE OF SEQUENTIAL BAYES

analyses. It would be of interest to know whether Kononenko's method
of iterative approximation can be mathematically linked to established
multiple regression or other estimation procedures traditionally used by
statisticians. In a new paper Kononenko (1989c) concedes that the
limitations of his system which are due to the independence assumption
(see objection (2) in this paper's Introduction) are the same as with
'naïve Bayes'. So severe a limitation certainly does not apply to the non-
linear variant of least-squares multivariate estimation discussed by
Angus, although it is strictly applicable to the linear variant. Recall that
the non-linear variant is equated in expressive power to Rumelhart-
McClelland neural nets. It would seem to follow that the latter suffer less
under conditions of non-independence than do Kononenko's ̀Bayesian
networks'.
In describing sequential Bayes as outlined in Michie (1989),

Kononenko's new paper contains one or two slips which we take this
opportunity to correct. Pruning is said to be defined 'with a threshold',
rather than with two thresholds. It is also stated that the algorithms for
generation of decision trees cannot be naturally extended to learn
incrementally. Incremental modification by re-entry to learning mode is
intrinsic to Evidencer's operation, as described in the present paper.

REFERENCES

Kononenko, I. (1989a). Interpretation of neural networks decisions. Proc. IASTED
Intern. Conf. Expert Systems and Applications, Zurich, June 26-28.

Kononenko, I. (1989b). Bayesian neural networks. In Biological Cybernetics (to
appear).

Kononenko, I. (1989c). ID3, sequential Bayes, naive Bayes, and Bayesian neural
networks. Ljubljana University: Faculty of Electrical and Computer Engineering,
unpublished report.

202

QUALITATIVE REPRESENTATIONS
OF KNOWLEDGE

14

Exploring Structures: An Exercise in

Model-based Interpretation and Planning

I. Bratkot
The Turing Institute,
Glasgow, UK

• Abstract

This paper presents the hardware and software environment of the
Freddy 3 Artificial Intelligence based robotics project, which is particu-
larly shaped to support robotic programming in the sense of Brady's
definition of robotics as intelligent connection of perception to action.
An application of this environment to implementing the StructureMover
demonstration is then described in detail. The structure-moving task,
accomplished by this demonstration, requires exploration with sensors,
and understanding of a structure presented to the robot system. It thus
requires the processing of sensory information, model-based interpreta-
tion of this information, and planning of both physical actions as well as
measurement actions to acquire new information.

1. INTRODUCTION

Brady (1985) defined robotics as 'intelligent connection of perception to
action'. Related to this definition and more specifically, the Freddy 3
robotics project sets as its goal the creation of a powerful robot pro-
gramming environment incorporating the following particular features:

(1) automatic planning;

(2) sensors and model-based processing of sensory information;

(3) machine learning; inductive programming;

(4) multi-robot cooperation and coordination;

(5) human-transparent communication between robots;

(6) various representations of the robot world: logic-based, geometric,
naive physics, deep models, and operational knowledge.

The general architecture to support these features is described in
more detail in Mowforth and Bratko (1986). In this paper the hardware

tCurrent address: E. Kardelj University, Faculty of Electrical Engineering and
Computer Science, Ljubljana, Yugoslavia.

205

EXPLORING STRUCTURES

-"and software environment of the Freddy 3 project is presented which
aspires to be particularly suitable for programming robots in the Brady
sense. Then the StructureMover demonstration is described, which is an
application of this environment to implementing a task of moving a
structure, presented to the robot, to a new position. As the structure to
be moved is not specified, the robot first has to explore it with sensors to
understand it. Thus the task involves the processing of sensory infor-
mation, model-based interpretation of this information, and planning of
both physical actions and actions whose purpose is to acquire new
information about the structure.
The current Freddy 3 hardware configuration includes the following:

(1) two Unimate Puma 200 robots with LSI 11 controller computers
running the VAL II robot programming language (vAL n is a language
of the end-effector level);

(2) a Rhino robot controlled directly from a VAX computer;

(3) VAX 11/750 and several Sun workstations networked through the
Ethernet;

(4) two cameras sharing a CRS 4000 frame store device;

(5) proximity and beam-break sensors mounted on the fingers of the
Puma robots;

(6) a conveyor belt.

Figure 1 shows the software hierarchy for robot programming which
spans from the robot arm control to the VAL II language, the low-level
sensory information processing in C, to high-level reasoning, planning,
and model-based interpretation in PROLOG. Software in the VAX is Unix-
based. The implementation of PROLOG is Quintus PROLOG. ROBEYE is a
Quintus PROLOG program for communication via Unix pipes between a
task-level program and the binary vision system BINEYE, and with
another C program, RoscoN, which communicates with the LSI ii Puma
controllers by sending VAL II commands and receiving messages from the
controllers and proximity and beam-break sensors. BINEYE (Shepherd
1987) is a simple but practical vision system built around the HIPS set of
basic image processing modules. The Turing Institute enhancements
and modifications of the basic HIPS package include a learning-from-
examples facility, ACLS (Paterson, Niblett, and Shapiro 1982) which
enables the user to teach the system to recognize non-overlapping
objects by simply showing examples of these objects. Another inductive
learning system available for robot programming is RuleMaster (Michie
et al. 1984) which has been applied to learning plans from examples for
block manipulation problems (Dechter and Michie 1984, Shepherd
1985).

206

BRAT KO

CRS 4000
Frame
store
A

LXLi
Cameras

Puma

Proximity,
beam-break
sensors

Figure 1. Hardware and software configuration of Freddy 3.

The StructureMover program described below demonstrates the
power of using PROLOG in model-based interpretation and planning. The
task involves combining three sources of sensor information, as well as
planning of physical actions and measurement action. In measurement
interpretation, the program makes maximal use of the knowledge of
what can be expected in the robot's world. In fact, the point of the
exercise is the use of models to compensate for gaps in the sensory infor-
mation, for example, hidden objects. StructureMover was programmed
in PROLOG and integrated with the rest of the Freddy 3 hardware and
software environment in two man-months. The structure-moving task of
this paper is similar, in respect of planning, to the struture-copying task
described in Winston (1972). Model-based interpretation of sensor data

207

EXPLORING STRUCTURES

was also investigated by Grimson and Lozano-Perez (1984), although
the nature of constraints drawn from the model in their work was
different.

2. THE STRUCTURE-MOVING TASK

In short, the task for the robot is:

Move the structure you see from its current position to the given
goal position.

A structure to be moved is made of blocks. Figure 2 shows examples
of structures for the moving task. The robot is not told what the structure
is. However, it is told what building blocks the structure is made of. For
example, for structure 1 in Figure 2, it is told that the structure consists
of three ̀ Iongblocks' and one ̀longslim'. Here, ̀longblock' is the user-
defined name for a block of dimensions 2*4*2 cm, and ̀ longslim' is a
block of dimensions 2*6*1 cm. The user may help the system by
(partially) supplying the orientation of the blocks. For structure 1 in
Figure 2, the user may thus specify: 'there are two lying longblocks, one
standing longblock, and one lying logslim'.

Structure 1 •

Figure 2. Examples of structures for the moving task.

Structure 2

The robot can manipulate one block at a time. To move the whole
structure, it first has to understand it. Therefore, the task consists of
exploring, by means of sensory measurements, and disassembling the
structure, and then reassembling it at the goal position. For disassembly,
the robot may use a set of predefined intermediate locations. Obviously,
the exploration (including the disassembly) of the structure is the diffi-
cult and interesting part of the task. Since the structure is not known, the
disassembly has to be planned carefully, avoiding risky or violent moves.
Such moves could disturb blocks in the structure in an uncontrolled way
thus resulting in a loss of structural information. No robot action may

208

BRAT KO

ever result in a change whereby the information about the structure
would be irreversibly lost.
The repertoire of the system's actions includes the following oper-

ations accessible as PROLOG procedures:

pickup(GraspPosition, Presence)

where

GraspPosition=X/Y/Z:Orientation
Presence=object or no_object

The effect of the pickup is: Move the robot hand to above the point
(Z,Y,zero) (zero is the height of the table) at sufficient height to avoid
any object, orientate the gripper according to Orientation, move down-
wards vertically to height Z, and check for presence of an object between
the fingers (beam-break sensor); now grasp if an object is present. The
argument Presence will signal whether an object has been grasped or not.

place(GraspPos)

Move the object currently held to a new position GraspPos (that is the
position at which the moving object is held at the final position of the
move). The trajectory, consists of three phases: vertically upwards, then
horizontally, and finally vertically downwards until GraspPos is reached.

lookinto(WindowName, Silhouette)

WindowName is the name of a user-defined window, of rectangular
shape, into the image array input from the camera (the user can in
principle define any number of windows). Silhouette is the binary top-
view image of the objects within Window. The silhouette is represented
as the union of largest rectangles in the image. The use of windows
enables selective processing of various parts of the image thereby saving
time.

proximityscan(Area, Height, SwitchPoints)

This causes an investigation by the proximity sensor, mounted on one
of the robot's fingers. The robot scans with this sensor at the height
Height within Area (again represented as the union of the largest
rectangles). The results are returned in SwitchPoints, that is the list of
points at which the proximity sensor changed its state (object/no object
detected and vice versa), see Figure 3.

3. THE ALGORITHMS

Before looking at the details of the algorithms and their implementation,
an example will illustrate the general ideas.

209

EXPLORING STRUCTURES

• Proximity sensor

FT Trajectory of proximity scanner

2 cm
3 cm

P1

Figure 3. Proximity scanning at height 4 cm above the table. The sensor is pointing
downwards. The dotted line indicates the region where the sensor will detect the
proximity of the object when scanning is in the x direction within the area above the
object. The signal will go on at point PI and off at P2. This information is represented as
a PROLOG list of the form: Switchpoints = [Pl: onX, P2: offX].

Let the structure to be moved be the one in Figure 4. Here is the trace
of the system's behaviour when solving this problem.

1. The system is started by being told that there are the following
blocks in the structure:

2 * standing longblock
1 * lying longblock
1 * lying longslim

2. The top view silhouette of the structure is extracted from the BINEYE
vision system. This silhouette is reported as a rectangle of the length
8 cm and width 2 cm.

3. This silhouette is interpreted with respect to the specified material.
The alternative candidate structures that satisfy the known con-
straints, together with the general physical constraints (e.g.
stability), are found. These are in this case represented by a list of 32
structured PROLOG objects.

Figure 4. Structure for detailed example.

210

B RAT K 0

4. The candidate configurations are of various heights. The tallest can-
didates are considered first; in the case that the actual structure is
lower, actions attempted at the greatest height will not damage the
actual structure. In our case, the maximum height is 8 cm. There are
two groups of candidate structures of this height, illustrated in
Figure 5. The system now tries to find a grasping position suitable
for all the candidate structures of height 8 cm. There is no such
common grasping position in our case. As there is no common
grasping position the system tries to find at least a safe grasping
position. Fortunately, the two candidate grasping positions at height
7 cm, labelled G1 and G2 in Figure 5, are safe in the sense that
grasping at any of them will not harm the structure should the
corresponding hypothesis be false. Thus G1 is chosen and the
action performed is

pickup(Gl, Presence)

Since there is no object at G 1, the information returned by the
pickup procedures is Presence = no_object. The pickup action has
thus ended as a failed grasping experiment.

Cl G2 G1 G2

Figure 5. Candidate structures of height 8 cm, G1 and G2 are safe grasping positions.
The arrows indicate the ranges of possible positions of the lying longblock.

5. The candidate structures that are not compatible with the new con-
straint that there is no object at point G1 must be eliminated. This
rules out the left-hand side family of structures in Figure 5. There is
now a common grasping position, G2, common to all the remaining
candidate structures of height 8 cm. The action

pickup(G2, Presence)

again fails to grasp anything. The candidate structures incompatible

211

EXPLORING STRUCTURES

with this result are eliminated again, ruling out all the candidate
interpretations of height 8 cm,

6. The maximum height of the remaining candidate structures is 7 cm.
There is a large number of candidate configurations of this height.
They do not share a common grasping position, and furthermore,
there is no safe grasping position. Therefore the action taken is

proximityscan(Area, 7, SwitchPoints)

where Area is the area of the structure's silhouette. Since the actual
structure is only 5 cm tall, this measurement returns the empty list of
switch points:

SwitchPoints = [1

As a result, all the candidate interpretations of height 7 cm are
eliminated from consideration.

7. At this point, there are five possible configurations left consistent
with the information known so far and with the other constraints.
They are shown in Figure 6. They all have a height equal to 5 cm.
There is a safe grasping position G3, and the action

pickup(G3, Presence)

is performed. This time the grasping succeeds (Presence = object),
although the robot does not know yet what object it is holding. It
could be the long slimblock or a longblock which corresponds to the
structures 1 and 2 of Figure 6. These two structures remain as the
possible candidates whereas the other three structures in the Figure
are discarded.

8. The next action is:

place(freelocation_l)

The long slimblock is placed into the first free location. There is a
small difficulty associated with this action since the robot does not
know which object is being placed: either the lying long slimblock or
a standing longblock. Therefore it is not quite clear at what height
the object should be released. There is a choice between risking to
drop the long slimblock from excess height, and pressing the stand-
ing longblock against the table. Fortunately, the geometry of the
robot's fingers allows a block to slip smoothly along the fingers if
pressed against the table, therefore the second alternative is chosen.

9. The object that has been just placed is looked at:

lookinto(freelocation_l, Shape)

212

Structure 1

Structure 2

Structure 4

BRAT KO

Structure 3

Structure 5

Figure 6. Candidate structures of height 5 cm. There is a safe grasping position.

The silhouette returned in our case is a rectangle of dimensions 2*6
cm. This last piece of information is sufficient to identify the block
just moved, which renders the structure finally disambiguated.

10. Since the structure is now completely known, the rest of the dis-
assembly process is smooth and easy. The disassembly is followed
by the reassembly at the goal location, in the reverse order of the
disassembly process.

Figure 7 shows the top-level code of a PROLOG implementation of this

213

EXPLORING STRUCTURES

process. For reasons of clarity, the original program was slightly simpli-

fied for this presentation. The omissions from the original deal with the
user interaction and various possible inconsistencies in the robot
environment. The Edinburgh syntax conventions of PROLOG are used
(e.g. Bratko 1986, or Clocksin and Mellish 1981), where names begin-
ning with a lower case letter denote atoms (i.e. constants), and those with
upper case letters denote variables. It is clear from the code that
structures are decomposed from top to bottom, and grasping experi-
ments are preferred to proximity measurements.

% Top level procedure: go(Blocks_in_scene)

go(Blocks) :—
lookinto(startwindow, Silhouette),
interpret(Silhouette, Blocks, Structures),
disassemble(Structures, ActualStructure),
reassemble(ActualStructure)

% disassemble(CandidateStructures, ActualStructure)

disassemble(Structures, Structures) :—
all_blocks_moved(Structures). % Whole struct. disassembled

disassemble(Structures, ActualStruct) :—
maxheight(Structures, Height), % Maximum height
separate(Structures, Height, Tall, Low), % Split into low and tall
removeblock(Tall, Outcome, NewStructures),
continue(Outcome, NewStructures, Low, ActualStruct).

% Outcome = moved (block successfully remove) or not_moved

continue(moved, NewStructs, ActualStruct) :—
disassemble(NewStructs, ActualStruct).

continue(not_moved,], LowStructs, ActualStruct) :—
disassemble(LowStructs, ActualStruct).

continue(not_moved, TallStructs, LowStructs, ActualStruct) :—
non_empty(TallStructs),
top(TallStructs, Height, Area), % Top area of TallStructs at Height
proximityscan(Height, Area, SwitchPoints),
consistent(TallStructs, SwitchPoints, ConsistentStructs),
removeblock(ConsistentStructs, Outcome, NewStructs),
continue(Outcome, NewStructs, LowStructs, ActualStruct).

1̀/0 Removing a block from the structure to an intermediate place
% removeblock(CandidateStructs, Outcome, NewCandidateStructs)

214

B RAT KO

removeblock([1, not_moved, []) !. % No candidate structure

removeblock(Structs, Outcome, NewStructs) :—
grasppos(Structs, GraspPos),
pickup(GraspPos, Presence), '9/0 Object grasped?
continue_move(Presence, Structs, GraspPos, Outcome, NewStructs).

grasppos(Structs, GraspPos)
commongrasp(Structs, GraspPos),!; % A common grasp position?
safegrasp(Structs, GraspPos). % A safe grasp position?

continue_move(object, Structs, GraspPos, moved, NewStructs) :—
getplace(FreeLocation),
place(FreeLocation, GraspPos),
lookinto(FreeLocation, TopView),
update(Structs, GraspPos, TopView, NewStructs).

continue_move(no_object, Structs, GraspPos, Outcome, NewStructs) :—
freepos(GraspPos, Structs, TrueStructs), %GraspPos free in TrueStruct
removeblock(TrueStructs, Outcome, NewStructs).

- Figure 7. The StructureMover program: top level procedures in PROLOG.

In the following paragraphs we look more closely at some of the
important procedures: interpret, commongrasp, safegrasp.

3.1. interpret(Silhouette, Blocks, Structures)

Interpret finds Structures as possible interpretations of the given
Silhouette, under the specified building material Blocks and other
physical constraints. StructureMover makes several strong assumptions
with respect to the structure that can be expected in the scene. Briefly, it
expects a rather regular, 'engineering-type' structure in which all the
blocks are aligned with the x-y-z axes. Essentially, the interpretation
problem is a kind of bin-packing problem where the given blocks are to
be packed into a given volume (determined by Silhouette) under stability
constraints. The interpretation program assumes that any structure
presented to the robot is ̀ superstable'. A structure is called superstable if
all the bottom corners of any block in the structure are supported.
Accordingly, stacks and arches are superstable, whereas seesaw-type
structures are not. The major problem in implementing the interpret
procedure is that of combinatorial complexity, since the complexity of
interpretation grows exponentially with the number of blocks in the
structure. The program uses certain time-saving heuristics, including
these two principles:

(1) fill the given volume in the order from the bottom to the top;

215

EXPLORING STRUCTURES

(2) fill the convex corners of the silhouette first (this is justified by the
sup erstability constraint).

3.2. commongrasp(Structures, GraspPosition)

GraspPosition is a grasping position (position and orientation) shared by
all the configurations of blocks represented by Structures. There has to
be enough space for the robot fingers to prevent collision with any of the
blocks in any of the candidate structures. Figure 8 illustrates how a
common grasping position can be determined. The problem of deter-
mining a common grasping position is again computationally complex
because of its combinatorial nature with respect to the number of candi-
date structures and number of blocks in the structures. One heuristic
used in the StructureMover program is to consider only the topmost
blocks in the candidate structures.

3.3 safegrasp(Structures, GraspPosition)

Here GraspPosition is a grasping position in at least one of the candidate

(a)

(b)

Figure 8. Examples of common grasping positions. (a) The position of the fingers
indicated is the common grasping position for both strutures. (b) Longblock on top of
longslim block; even if the displacement of the longblock is not known there is a
common grasping position as indicated.

216

BRAT KO

configurations in Structures, and is either a grasping position or is safe
with respect to any other configuration. Of course, there are situations in
which there is no safe grasping position. In such cases proximity
measurements are necessary, as illustrated in Figure 9. Again, the safe-
grasp relation is computationally complex.

2 cm

6 cm -0..

Figure 9. A standing longblock on a longslim block. For the set of structures with
various displacements of the longblock with respect to the longslim block, there is no
safe grasping position.

Several computational functions depend on the representation of free
space or free area. In StructureMover, these are represented as the union
of all the largest boxes or rectangles enclosed in the free space or free
area respectively. This representation facilitates the testing for collisions
between blocks, or for verifying that there is sufficient space for placing a
block or for the robot fingers when determining a grasping position.

4. PERFORMANCE AND LIMITATIONS

The difficulty of the moving task depends critically on the structural
complexity of the structure to be moved. If the blocks are separated or
the structure consists of stacks or similar simple constructs then the
interpretation task is easy even for a large number of blocks in the scene.
In the case of compact structures with overlapping blocks the number of
possible interpretations grows fast with the number of blocks. In general,
the system can easily handle complex structures of up to five blocks,
whereas the present StructureMover implementation may become
rather slow with a higher number of blocks because of the combinatorial
nature of several subtasks associated with the exploration of structures.
For illustration of the program's performance, Figures 10 and 11 give
two more examples of structures and corresponding solution traces. The
real time needed to disassemble and move structures like 'these is
typically in the order of one or a few minutes. Typical breakdown of this
is roughly as follows:

25% low-level vision done by the BINEYE system (grabbing picture,

217

EXPLORING STRUCTURES

4 cm Silhouette

cm--+

Told: 2 * longslim/lying; 1 * longblock/standing; 1 * squareblock/standing

There are 40 candidate configurations. Maximum height=8 cm

Proximity scan at height 8 cm returns []. Number of remaining
candidate configurations=34. Maximum height=5 cm.

Proximity scan at height 5 cm returns [Pl: onX]. Number
of remaining candidate configurations becomes 3.

Grasp at Cl, object grasped. Move the object and look at it.
There are 2 configurations left.

Proximity scan at height 4 cm returns [P2: off Y]. Now there
is only one candidate structure left.

Grasp at G2, move object. Grasp at G3, move object. Grasp at G4,
move object. Reassemble.

Figure 10. A structure and the trace of exploring it. Cl to G4 are grasping positions, Pl.
and P2 are proximity switch points detected.

smoothing, and noise reduction, computing parameters of binary blobs
detected in the image);

25% high-level, model-based reasoning in PROLOG (interpretation of
binary blobs returned by low-level vision and other sensory information,
planning of further measurements, planning of grasping actions);

50% actual physical manipulations performed by the robot arm.

The percentages above, of course, vary significantly with the complex-
ity of the structure. For more complex structures, the time necessary for
the low-level vision will remain similar in absolute terms whereas the
high-level reasoning will expand.

218

BRAT KU

Structure A

Figure 11. Structure A cannot be solved without the use of the proximity sensor (no safe
grasping position). It is interesting that adding more blocks to obtain structure B helps,
so that structure B can be solved without the proximity sensor. The reason is that the
system will know that the lying longslim block must be supported at both ends, and
therefore the square block must be behind the isolated longblock. The grasping
sequence GI,..., G7 is found without any proximity measurement.

Apart from the combinatorial complexity problems, there are several
other limiting factors in the present implementation.

1. Constraints with respect to structures:

(a) blocks have to be aligned with the x-y grid;

(b) structures must be ̀superstable';

(c) resolution in displacement of blocks in the model is assumed to be
1 cm, although actual structures with finer displacement are still
normally handled correctly even if the actual grasping position
relative to the object grasped does not exactly correspond to the
position in the system's model.

219

EXPLORING STRUCTURES

2. Limitations with respect to the gripper The simple gripper used in our
case allows only objects about 2 cm wide to be grasped. Additional
constraints are imposed by the optic fibres attached to the fingers and
used by the proximity and beam-break sensors which makes the
whole hand rather awkward to manipulate. Thus, for example, two
longblocks' (2*4*2 cm) aligned in parallel at a distance of 3 cm, say,
cannot be grasped at all. Such structures therefore cannot be manipu-
lated unless tricky moves are employed, e.g. pushing objects.

3. Limitations due to inaccuracy in measurements Gross approxima-
tions of the visual and proximity information are necessary; these
approximations are justified by the use of the strongly constrained
models of the possible structures.

5. CONCLUDING REMARKS

The work can be naturally extended in many interesting ways. Some of
them belong to major research problems of m-based robotics. Here are
some possibilities:

1. Introducing composite objects as illustrated in Figure 12. More
interesting objects can be obtained by simply sticking the primitive
block-type objects together. Most of the existing high-level reasoning
in StructureMover would be sufficient to handle objects composed in
this way.

Figure 12. An example of extending the blocks world to more interesting objects using
blocks as primitives.

2. Relaxing the superstability constraint to the normal stability.

3. Systematic treatment of measurement errors.

4. Error recovery in plan execution.

5. Planning of tricky moves, for example those that involve the pushing
of objects, (a traditional sTRIps-style planner like WARPLAN [Warren
1974] could be used to compile a repertoire of stereotype macro
moves to be used by StructureMover to achieve special effects).

6. Naïve physics reasoning and qualitative modelling of the blocks
world (Figure 13 illustrates motivations behind such a facility).

220

A

BRATKO

Figure 13. How can the system disambiguate between these two candidate structures?
Sensors do not help in this case and 'tricky' moves such as pushing are necessary. One
strategy to destroy the structure, without loss of information, would be to use a longslim
block as a tool and push both top blocks, first towards the right and then forward, by 1.5
cm each time. In the case of structure A, a longblock will finish on the table in front of
the other blocks; in the case of structure B, a longblock will finish to the right of the
other blocks.
We do not have to know the exact location of this longblock, but we have to know it
approximately or qualitatively. Mechanical synthesis of such recognition strategies can
thus be based on qualitative physics.

7. Optimization of plans, both in respect of physical actions performed
by the robot arm, and the planned measurements according to the
expected information gain.

From the experience obtained in this study, it seems a good idea to
keep the numerical world that talks to the sensors clearly separated from
the high-level relational representation, where the logical reasoning is
done. If a mixture of both representations is used, then the clarity of the
logical reasoning is marred and much of the advantage of logic thereby
lost. In PROLOG, for example, mixing both worlds can lead to unexpected
failure in the unification process due to a small mismatch caused by
numerical errors in real numbers. A clearcut, although possibly non-
deterministic interface between the numerical representation and the
logic-based representation would seem to be a good idea.
One way of transforming a numerical representation, marred with

noise, such as a binary image, into a logical description is through the use
of an inductive learning facility. Figure 14 illustrates how a decision tree
generating inductive program of the ID3 type (e.g. Quinlan 1983),
with added tree-pruning mechanisms as in the Assistant program
(Cestnik, Kononenko and Bratko, 1987) can be used.

Finally a question can be asked: What is the point of such exercises,
apart from demonstrating that model-based interpretation may compen-
sate for lack of more sophisticated sensors, as in our case, for example, a
very simple binary vision system with a little help from other simple
sensors is adequate? Is there a practical situation where a similar
approach can be applied?

It is not hard to imagine a robot system with a sophisticated user-
interaction facility for the naïve user. Such a user would be supposed to

221

EXPLORING STRUCTURES

Y A 0
o
0 0 0

0 0 0
0 0 00

b3—°
0

000
b2—

0
0

0
O0

— 0

O 0

bl

O 0
O 0

0 0

o 0

O 0
00 0 0
o

0 0 0 0

00
Q0 0
O ° 00
00

00 0
0

0
0 0 0

0

al a2

Inductive learning formulation:

• Positive examples

0 Negative examples

a3

Binary image
distorted by
noise

Decision tree

Figure 14. Inductive learning approach to extracting compact descriptions from noisy
images. The decision tree built by a pruning inductive tree generator represents a
rectangular polygon.

instruct the robot, without any programming knowledge or any ref-
erence to geometrical descriptions. How would such a user specify struc-
ture 2 of Figure 2, for example? For a complete specification, the user
would perhaps have to make reference to a coordinate system, make
sure that the robot understands that same coordinate system, and then
give exact coordinates of the objects in the scene, or alternatively he or

222

BRAT KO

she would use relations such as 'aligned with' or ̀ supported-by', or
'behind' from a particular point of view. All this requires a certain effort
and degree of sophistication on the part of the user and involves the risk
of ambiguous description. It is straightforward, however, just to specify
what objects there are in the scene, and possibly to specify some easy
relations, such as 'lying' or 'standing'. Using this partial information as
constraints, a system like StructureMover would then identify the actual
situation through measurements and constraint-based interpretation.

REFERENCES

Brady, M. (1985). Artificial Intelligence and Robotics. Artificial Intelligence, 26
(No. 1), pp. 79-121.

Bratko, I. (1986). Prolog Programming for Artificial Intelligence. Addison-Wesley.
Cestnik, B., Kononenko, I., and Bratko, I. (1987). ASSISTANT 86: a knowledge-elicitation
tool for sophisticated users. In Progress in machine learning (ed. I. Bratko and N.
Lavrae). Sigma Press, Wilmslow, UK.

Clocksin, F. W. and Mellish, C. S. (1981). Programming in Prolog. Springer Verlag.
Dechter, R., Michie, D. (1984). Induction of Plans. The Turing Institute, Glasgow
(TIRM-84-006).
Grimson, WE. L. and Lozano-Perez, T. (1984). Model-based recognition and
localization from sparse range or tactile data. International Journal of Robotics
Research, 3, pp. 3-35.

Michie, D., Muggleton, S., Riese, C., and Zubrick, S. (1984). RuleMaster: a
second-generation knowledge-engineering facility. First Conf. on Artificial Intelligence
Applications, Denver, 5-7 December 1984. Silver Spring, Md.: IEEE Computer
Society, pp. 591-7.

Mowforth, P., and Bratko, I. (1987). Al and Robotics: flexibility and integration.
Robotica. 5, 93-8.

Paterson, A., Niblett, T., and Shapiro, A. (1982). ACLS User Manual. Glasgow:
Intelligent Terminals Ltd.

Quinlan, J. R. (1983). Learning efficient classification procedures and their application
to chess end games. Machine Learning: An Artificial Intelligence Approach (ed. R. S.
Michalski, J. G. Carbonnell and T. M. Mitchell) Kaufmann.

Shepherd, B. (1987). BINEYE: a flexible experimental robot vision system
incorporating inductive learning. The Turing Institute, Glasgow.

Shepherd, B. (1985). GENARCH: a practical solution to a general arch building
problem using RuleMaster. Freddy 3 Project: Year I (ed. I. Bratko) The Turing
Institute, Glasgow.

Winston, P. H. (1972). The MIT robot. Machine Intelligence 7(ed. B. Meltzer, D.
Michie) Edinburgh University Press.

Warren, D. H. D. (1974). WARPLAN: a system for generating plans. University of
Edinburgh: Department of Computational Logic (Memo No. 76).

223

15

Learning of Causality by a Robot
P H. Mowforth
The Turing Institute and the University of Strathclyde,
Glasgow, UK

T. Zrimec
E. Kardelj University,
Ljubljana, Yugoslavia

Abstract

This paper describes an experiment in which a robot is allowed
randomly to explore the domain of object-pushing via controlled experi-
ments. The experiments consist of recording signals from sensors before
and after an action has taken place. Each experiment may be considered
as a state transformation recorded as a sequence of attribute values.
Treating each transformation as a training example, a large set of data
was collected and subjected to rule induction. Robust and useful trans-
formations were discovered which were represented as a hierarchical
qualitative model. Further, results show that an actor-oriented, co-
ordinate frame provides the most compact description for the problem.
One final observation is that this style of experimentation offers the
potential for closed-loop learning in that, unlike other domains, as far as
the robot is concerned, its world is the oracle.

1. INTRODUCTION

Robots are typically difficult to program. Within this context we can
consider three approaches that may be taken towards the goal of auto-
mating the task. The first approach follows from a high-level task specifi-
cation, the second from the use of sensors, and the third from allowing
the robot to learn as a supplement to predefined behaviour.
The first approach is via the automatic synthesis of robot control

programs from a higher-level programming environment. This may
include the development of systems for the automatic synthesis of plans.
These systems, often referred to as planners, use various forms of
constrained search to find a sequence of operations which will transform
a given initial problem into a goal. Examples of such systems are GPS [8],
Graph Traverser [3], STRIPS [5], and NONLIN [11]. One of the authors has
developed such a system [12] (see Figure 1), which has already been
used to control an assembly robot for industrial applications. Indeed,

225

1111111■_

LEARNING OF CAUSALITY BY A ROBOT

COMMUNICATIONS

• User interface
• Sensor interface

PLANNING

• Checking
• Preparing
• Generating

Task —÷ Manipulator
level level

1
KNOWLEDGE BASE

• Tasks
• Object descriptions
• Robot commands

Figure 1. Block diagram of the ROPRO system used to automatically generate
manipulator-level code from a PROLOG specification.

part of the motivation for the research described in this paper is a direct
consequence of appreciating the difficulty and tedium of developing
systems in which a complete framework of specification must be
provided.
A second approach to the automation process is via the use of sensory

information. Here, a control program can leave certain information in
the form of variables whose values are provided by a sensor rather than
by direct calculation. For example, rather than calculate the exact
position and orientation of an object from some pre-stored knowledge of
the problem, variables such as position and orientation can be provided
whose values can be set automatically from sensory systems. Although
this offers much potential, a distinction needs to be made between
having a sensory signal and knowing how to make effective use of that
signal. Having a camera does not mean that you have vison. The knowl-
edge that relates a sensory variable to achieving some step in the control
program still needs to be coded by a programmer.
The third approach to the problem involves getting the robot to learn.

While this approach is clearly tricky, in principle it offers the greatest
potential for automation. One early related piece of work by Michie and
Chambers [6] involved a simulation of a pole and cart (a two degree of
freedom mobile robot) for which a simple credit assignment algorithm
slowly learned to balance the pole. This was achieved by reinforcing
condition-action pairs which directly contributed to pole balancing com-
bined with an exploration heuristic designed to ensure the avoidance of
local minima. A later piece of related work by Dufay and Latombe [4],

226

MOWFORTH AND ZRIMEC

used a two-phase approach to building robot programs: a training phase
which produced a number of execution traces and an induction phase
which transformed the traces into an executable program. The task was
to insert a pin into a chamfered hole, a task which, due to geometric
uncertainty, involved the planner in generating several different
sequences of motion which were then subjected to iterative transforma-
tions such as the merging of nodes and arcs labelled by motions and
states regarded as equivalent by rewriting rules. One final related project
described by Dechter and Michie [2] involved the use of an inductive
learning algorithm which was used in the construction of a robot plan for
arch building.
The factors which contribute to the current experiment are based on a

few simple observations and preconceptions:

1. First, if we are to fill in the gaps in a poor or incomplete task specifi-
cation we will need to make use of broadly generalizable knowledge.

2. Such knowledge should be learned on the basis of results gathered in
the real world rather than under simulation.

3. A random number generator is a very easy (and natural) way to vary
interaction with the world so allowing a broad exploration of a
problem domain.

4. The only way the robot can describe its world is in terms of sensory
signals. Hence, any model produced by learning should be expressed
directly in terms of the natural signals produced by sensors rather
than in terms of, for example, abstract geometry.

Within this framework a sequence of experiments was conducted with
the goal of exploring the problem domain of object pushing. The aim is
to let the system discover how its world works through play and random
exploration. To achieve this we must first develop an algorithm which
will allow the robot to learn the relationship between action and percep-
tion on the basis of performing experiments in its world.

2. METHOD

The experiments described here were conducted using the Turing
Institute's advanced robotics research test-bed, [7]. The Freddy 3
environment currently consists of two Puma 260 robot arms, vision
systems, speech systems, and other sensors each of which is controlled,
in real time, from Quintus PROLOG running on a Unix network. The
current experiment uses one robot, a vision system, a speech synthesizer
and a PROLOG control process (see Figure 2).
The PROLOG process for robot control (RoBEYE) communicates with a

227

LEARNING OF CAUSALITY BY A ROBOT

(Vax 11/75()

Parallel
port

Su

Su
Su

Ceiling mounted
camera

Speech
Synthesiser

Sun

Ethernet+modems

Puma
Controller

Mains power
switchbox

.0 40 .0 .0 .0

. .0 .0 .0 .0

10 .0 .0 10 .0

CRS-4000
Framestore
+monitors

Puma 260+
pneumatic
gripper
+local
sensors

Figure 2. The hardware configuration for the equipment used in the experiment.

vision system process (BiNEyE) and other sensory processes through
which it gets information about its world. For example, the vision system
performs object segmentation via thresholding in the specified window
and recognition by using inductively generated rules, so providing
information about object class (symbolic name), object position
(centroid x,y) and object orientation (principal axis). Examples of vision
windows can be seen in Figure 3a.
The object-pushing experiment required a window in the robot work-

ing area in which (a) the vision system operated, and (b) there were no
robot singularities. The window was a square on the table surface of
dimensions 10 cm x 10 cm which was named play_window (the larger of
the two windows in Figure 3a). There were a few additional windows
which had to be processed in order to calibrate the experimental
environment. This was achieved by defining a common coordinate
system for the robot and the vision system. The smaller window in
Figure 3 shows one of the two calibration crosses used to achieve this.

228

MOWFORTH AND ZRIMEC

Figure 3. Two views of the experiment, one overhead from the vision system showing
two windows and the other from the side (digitized output).

The robot hand held a pushing tool (a pen) which was picked up from
the tool_window using BINEYE at the start of the experiment. Next, the
robot asked, using its speech synthesis unit, for an object to play with. A
human then placed a wooden block, randomly oriented, within the
play_window. The vision system then noted the centroid start position
(X_obj_start, Y_obj_start) of the object as well as its principal axis
which defines the object orientation (Angle_obj_start). The experiment
was controlled by a PROLOG program which generated two random
numbers for the robot start position on the boundary of the
play_window (X_rob_start, Y_rob_start). Two more random numbers
were generated for the ending point of the action vector (X_rob_end,
Y_rob_end), again on the play_window boundary. The robot then
slowly swept the pen through the play_window along the line of the
action vector. BINEYE then looked into the play_window and recorded
the ending position of the object centroid (X_obj_end, Y_obj_end) as
well as its final transformed orientation (Angle_obj_end). Figure 3
shows two views taken at various stages of the experiment; in Figure 3a
we show the view as seen by the overhead camera looking down on the
robt while in Figure 3b we see a side view. Figure 4 shows a block
schematic illustrating the various stages of the experimental method.
Because of the inherent symmetry of the block, BINEYE can provide

orientation information only over a range of 90 degrees. To provide 360
degrees of orientation, a black spot was painted on one end of the block
and a separate threshold used to segment it. Combining both the
silhouette of the object with the silhouette of the spot we were able to
define real orientation uniquely. Occasionally the block was pushed out
of the play_window. When this happens, ROBEYE automatically invokes

229

LEARNING OF CAUSALITY BY A ROBOT

Calibrate vision system,
set up windows in scene,
pick up pen and ask for
object to play with.

▪

SENSORY INFORMATION:

X-obj- start
Y-obj -start
Angle-obj -start

▪

ROBOT MOVEMENT:
X - rob-start
Y- rob- start
X-rob-end

Random

Y-rob-end

1. SENSORY INFORMATION:

X-obj-end
Y-obj-end
Angle-obj-start

If necessary,
get object put
back.

Learn the relationship
between action and
perception.

Figure 4. A block schematic for the experimental method.

a larger window and, before asking for human help, records the final
position and orientation of the block.
The robot carried out 106 experiments with a wooden block of

dimensions 2cm x 2cm x 4cm and the information from each experi-
ment was written on a file. At a later stage (see Section 4 on model gener-
ation), 157 further experiments were carried out using the same block.
Figure 5 shows a number of random action vectors carried out by the
robot. The lines were drawn by the robot using its pen and demonstrate
that the random number generator allowed a broad exploration of the
problem space.

3. GETTING THE COORDINATE FRAME RIGHT

The next step following data collection was to discover some general
rules for the domain using the method of 'learning from examples'. We
used the learning system Assistant:86 [1] which is similar to Quinlan's
ID3 algorithm [10]. This algorithm has the ability to induce a general
description of concepts (classes) from examples of these concepts

230

MOWFORTH AND ZRIMEC

.A+4"...,temaimaintnewnkAwAteamelpaosoko!...,,.,
M920.00.400154gotia.

TavontWier
—

eee e 4 e.

Figure 5. Lines drawn by the robot during the experiments (digitized output). Results
show that the random number generator allowed a broad exploration of the problem
space.

(classes) and to produce a symbolic description of these concepts in the
form of a decision tree. Examples are objects of a known class described
in terms of attributes along with their values. Our data consists of ten real
numbers from which we had to prepare learning examples—attributes
and class information. In order to define classes we must first generate a
goal. As the goal is to understand what causes a change in perception,
our class values were related to perceptual change. In this way we got
three raw classes; DX (change in X position of the object), DY (change in
Y position of the object) and DA (change in orientation of
the object). The other seven numbers (X_obj_start, Y_obj_start,
Angle_obj_start, X_rob_start, Y_rob_stgart, X_rob_end, Y_rob_end)
were used as raw attributes.
In the first learning experiment we made a simplification with two

classes:

change =0, and •
change 0 0,
(change stands for object change in either position and orientation).

The induced tree was very large with knowledge expressed in terms of
values strongly connected with the window coordinate frame. After
performing several learning experiments in which we were unable to
produce any generalizable knowledge, we decided to perform some
experiments in transforming the axes to discover whether it was possible
to simplify the results. However, the original choice of the coordinate

231

LEARNING OF CAUSALITY BY A ROBOT

system was connected with the experimental environment, and the data
were expressed in the coordinate system which was common to the robot
and the vision system.
We performed an experiment to test different coordinate frame

representations of the data: a window-oriented coordinate frame (X and
Y lie along the axes of the play_window), an object-oriented coordinate
frame (the vision coordinate system— Y lies along the principal axis of
the object with 0,0 offsets at X_obj_start, Y_obj_start) and an actor-
oriented coordinate frame (robot coordinate system— Y lies along the
line of the action vector with 0,0 offsets at X_rob_start, Y rob_start).
While the original data lay in a window-oriented coordinate frame, two
new sets of geometrically transformed data were constructed for the
object- and the actor-oriented coordinate frame. Each of the three data-
sets were then passed to Assistant:86. Both complete and pruned trees
were generated for each of the three experimental conditions. Figure 6
shows the three resulting trees. The trees were analysed by looking at the
number of nodes, leaves, and attribute types present in the induced tree
for each experimental condition. The results are shown in Table 1.

Table 1. Table of results for coordinate frame experiment.

Parameter Coordinate frame type

Window Object Actor

No. of nodes (pruned) 15 13 9
No. of leaves (pruned) 8 7 5
No. of null leaves 1 1 0
No. of different attributes appearing in the tree 6 4 3

Given that there is no reason for choosing one coordinate frame in
preference to another, we decided to follow the principle offered by
Occam's Razor which suggests that, given multiple descriptions, the
simplest should be chosen, that is, low complexity is synonymous with
high credibility [9]. We chose the actor-oriented coordinate frame. The
presence of null leaves in the trees for both the window- and object-
centred descriptions supports the choice.

4. GENERATING A MODEL

Having now ascertained an appropriate coordinate frame for describing
the experiment, we next turned our attention to trying to discover any
regularities in the experimental data and to discover any accompanying
representation. All further experimentation uses the geometrically
transformed raw data.

232

Window-oriented geometry

MOWFORTH AND ZRIMEC

<= 16.00 ,---,16'00<=20"

, ang_obj_start
x_rob_start <= 130.00

16.00<

x_ rob_start

20.00<

<=16.00 x_obj_start

16.00<

130.00
ang_obj_start

<=

Object-oriented geometry

— 10.00< =10.00 ang_obj_end I 0.00<

ang_ obj_end
y_rob_start

—2.00< <=2.00
<=2.00

y_rob_start

Actor-oriented geometry c---
y_obj_start 8.00<

X< = 8.00

<=4.00 x_obj_end

—4.00

<=2.00 x_obj_end no<

x- ai-end 2.00<

—4.00
<=2.00

Figure 6. The decision trees shown above are for the window-oriented coordinate
frame, the object-oriented coordinate frame, and the actor-oriented coordinate frame.

233

LEARNING OF CAUSALITY BY A ROBOT

The learning procedure used for the development of the model
consists of several modules in a loop as shown in Figure 7. Development
required several iterations.

EXPERIMENTATION:

Data collection of variables

MODEL CONSTRUCTION:
Hierarchical construction

Generation of deep
knowledge

PREPROCESSING
THE DATA:

Geometric transformation
+clustering

INDUCTIVE LEARNING:

ID3

Figure 7. Summary of the sequence of operations necessary to develop the model.

Using a clustering algorithm we were able to define symbolic (logical)
classes. In each iteration the machine-derived clusters were used as
logical classes, each of which was named by a human oracle. The learn-
ing algorithm, Assistant:86, was used to extract the knowledge from the
data in the form of rules (branches in the decision tree), which made
explicit the regularities in the data (relationships between classes and
attributes).
Induction was performed separately for three pairs of classes defined

as changes in the X direction, the Ydirection, and the orientation of the
object. The three separate decision trees for changes in Y, X, and Angle
of the object (DX, DY, DA) all shared a common root node in which
X obj_start = a value which corresponded to the maximum projected
radius of the object (radius with which the action vector intersects). For
each decision tree, this attribute value split the examples into those
showing no_change on one branch and change on the other. By applying
the logical operators and or or, the classes for DX, DY, and DA were
merged into a new common class which we named PUSH (change in all
directions) and NO_PUSH (no change in any direction). To test these
operations, an additional experiment was performed using the PUSH and
No_pusx classes. The result from the induction is shown as level 1 of the
model depicted in Figure 8.

234

MOWFORTH AND ZRIMEC

4---LEVEL 1—*4-LEVEL 2-o-4—LEVEL 3—*-4--LEVEL

NO_PUSH

>max_projected_radius
X_obj_start--•*i

<rijax_projected_radius
•

PUSH PUSH_LEFT
•

•

•

X_obj_start—oi
>,0

•

•

PUSH_RIGHT

LITTLE_MOVE
•
•
•
•

Extreme
Pusli_at

Noi_extreme
•

BIG MOVE

TRANSLATION

Around_90_degrees

Between & iel_angle

Not_ around_90_degrees

Center & rel_angle

Around_90_degrees

BOTH

ROTATION

Figure 8. The final machine-learned, hierarchical, qualitative model, PANIC.

Using level 1 of the model we can predict that whenever the action
vector intersects with the object then a change in position or orientation
is likely to occur, i.e. it is pushed. If an intersection is unlikely then the
object is left in the same place, i.e. it is not pushed.
The knowledge from level 1 was implemented as a module and used

by the program that supervised the experiment. This knowledge was
tested, found to be robust, and was used to collect additional data for all
those situations involving object pushing. This meant that before the
robot carried out an experiment, it first checked to see whether a PUSH
would occur. If the model predicted that NO_PUSH would be the result,
the robot calculated a new random action vector and repeated the
exercise. Using level 1 to direct the robot into performing PUSH experi-
ments, we verified that the model successfully predicted changes in
position or orientation of the object and 157 new PUSH experiments were
carried out. These data were used as a basis for all later learning experi-
ments.
By using a clustering algorithm, new subclusters were found in the

collected data derived from successful PUSH experiments. The data for
DXand DA were grouped into two large clusters: one containing positive
values and the other containing negative values. The values of DY were

235

LEARNING OF CAUSALITY BY A ROBOT

all positive due to the choice of representation. Again, the decision trees
could be merged and were used to express level 2 of the model shown in
Figure 8. Level 2 of the model predicts that if an actor pushes an object
on the left then it tends to move away and to the right and also to spin
clockwise. If, however, the object is pushed on the right then the object
moves away and to the left and tends to spin clockwise. By finding
further subclusters in the data and repeating the learning procedure, two
further levels were discovered which are again shown in Figure 8. Level
3 allows us to predict that if the object is pushed on the extreme left or
the extreme right then we may expect a small change in rotation and
translation. Alternatively, if we push near the centre of the object then
we would expect a large change to occur—translational or rotational.
Level 4 allows us to refine our predictions from level 3. The form of the
refinement is that if we take into account the relative angle between the
actor and the object, we can predict pure translation whenever we push
in the centre or orthgonally. Alternatively, when we push orthogonally to
one side of the object we may expect maximum rotation. Any other
combination does not allow us to make a reliable prediction.
Figure 9 shows a graphical representation of the model. The position

on the block along with the qualitative class name resulting from an
action is indicated for all levels of the model.

Actor

Actor

Actor

Figure 9. Graphical representation of PANIC.

•

Push

•

No_push

•

Move_right

Move_left

Level
one

Level
two

E> Little_move f

* Big_move Level

* Little_move
three

/

E> Rotation f
E> Translation

Level
four

E> Rotation
4'

236

MOWFORTH AND ZRIMEC

5. LEVELS OF ABSTRACTION

At different levels of the hierarchy, the knowledge may be described in
different ways. These descriptions may be summarized as in Figure 10.
The complete hierarchical qualitative model was named PANIC which

stands for Perception and Action as NaIve Causality.

More simple

More coarse

More general

PANIC

Level 1

Level 2

Level 3

Level 4

Figure 10. Knowledge of hierarchy levels of PANIC.

6. DISCUSSION AND CONCLUSION

More complex

More detailed

More specific

The experiment has introduced a novel paradigm into robot learning
research. The paradigm is that of causality learning in which a robot with
sensors is allowed to carry out experiments in a partially random,
partially directed fashion. Coupling the experimental data with a primi-
tive machine learning system has allowed broad clusters and subclusters
to be discovered in the data. When these clusters are described with
symbolic names, they can be organized in the form of a hierarchical,
qualitative model.
One of the important findings of the experiment was that by changing

the coordinate frame it was possible considerably to simplify the model.
Of the different coordinate frames tested, the actor-oriented represen-
tation proved to be the most compact. Further, it makes sense—an actor
on stage describes 'stage left' relative to the actor rather than to the
audience. Also, humans often talk about left-hand' or 'right-hand' side in
terms of their own coordinate frame. To have described the coordinate
frame as object-centred is logical in that an action is only an action
relative to what you understand as having happened in your world, i.e.
you hit the ball, you open the door, or you push the table. Given this
natural tendency to describe coordinate frames for events relative to
ourselves, it is not surprising that ancient man typically believed Earth to
be at the heart of the universe.
There were some difficulties because the machine-learning algorithm

was far from ideal for this task. This meant that a large number of iter-
ations (machine-learning experiments) had to be peformed. The reason

237

LEARNING OF CAUSALITY BY A ROBOT

was that the requirement of discovering broad classes of data which
could be described in qualitative terms required a numerical, hierarchi-
cal, clustering algorithm. Because such an algorithm was not available,
many of the problems in model construction related to the tools rather
than to any intrinsic problem with the experimental method. Further,
while the steps described here for model construction are potentially
open to complete automation, some of the later stages are currently
'hand-held'. Closed-loop automation is an important goal for later work.
A second problem with the results was that some parts of the model,

particularly in level 4, were supported by few examples. Because the
exploration of the domain was random, the learning was therefore
limited. To make the learning more effective the robot requires an
explicit strategy by which it can direct its exploration towards 'interest-
ing' clusters of results. The term 'interesting' suggests that the robot has
some form of motivation. We provided such direction after discovering
level 1 of the model. Although NO_PUSH was a useful class to discover (it
is after all the basis for developing collision avoidance), when level 1 was
implemented, it was used to direct the robot into PUSH experiments.
Thus, we gave direction to the robot by knowing that it was not going to
discover very much about interacting with objects if it never touched
them. This simple piece of 'common sense' knowledge is, however, easy
to build into the robot. The mechanism that would allow this to happen
would be that the robot direct its behaviour in such a way as to increase
the likely amount of sensory change. Such an idea appears commonplace
in biological systems where things that are bright, loud, or quickly
moving are typically more interesting than things that are not. Indeed,
biological sensors appear to be specifically designed to respond more
strongly to change than to steady-state stimulation.

Unfortunately, if strong sensory change was the only parameter to
effect primitive motivation, the robot would work its way into a single
local minimum and get stuck there. To avoid such situations, we propose
that a complementary process be used which can be referred to as
habituation or boredom. This would mean that whenever the robot.
carried out a certain number of experiments within one portion of the
problem space and had found some reasonably reliable transformation
there, it would get bored and would jump out of the local minimum via
the random number generator. Thus each cluster of the model would
have an associated weighting factor whose value would be determined by
the two opposing forces of strong sensory change and habituation.
Whenever the weighting factor falls below a certain level, the robot
redirects itself to play with some other problem.
So far, the model is untested. It was generated using all the available

data, hence no generalization has been demonstrated. Although future
work must include such studies, it is worth pointing out that the model,

238

MOWFORTH AND ZRIMEC

as with the coordinate frame makes good sense. While level 1 is almost
too obvious to mention (you can push an object only if the action that
you carry out intersects with some part of the object), level 2 could allow
you to reason about some quite interesting problems. For example, if
you want to push a car forward at which end should you stand?, or if you
want to make a billiard ball spin anticlockwise on which side should you
hit it? Level 2 of PANIC shows that during any push an increase in Y is
very likely and that you must therefore stand at the rear of the car so that
your action vector pushes the car forward. The anticlockwise spin on the
billiard ball would be achieved if it were pushed on the right. Level 3
would tell you that if you wanted to hit a ball as far as possible then you
should hit it in the middle, while level 4 could help in knowing how to
produce pure translation or rotation movements in objects. Thus, if you
wanted to push a boat out into a river in a straight line PANIC would
predict that you could stand behind it and push roughly in the middle so
that the relative angle between the surface of the boat and the action
vector is around 90 degrees.
While the experiments described here represent some early steps

taken in getting a robot to learn for itself about how to act in the world,
, one short-term goal will be to use PANIC-style rules to supplement a
conventional robot control system. Figure 11 shows one simple example
of how rules derived from level 2 of the model could be used to push an
object into a desired configuration by a process of minimization. Provid-
ing the control loop steps are sufficiently small then DY, DX and Dang
will all be effectively zero on completion of the control loop.

Dang=Ang_ obj_goal_Ang_obj_start

Dy=Y_obj_goal_Y_obj_start Approach object

Rotate geometry
—constructive
induction

If Dang increase
then push_right
else pushJeft

STOP

Figure 11. Use of PANIC rules for dynamic control.

239

LEARNING OF CAUSALITY BY A ROBOT

Acknowledgements

The authors thank the SERC and The British Council for financial support and to the
many researchers at both Ljubljiana and Glasgow who have contributed with ideas.
Thanks in particular to Barry Shepherd, Ivan Bratko, and Peter Clarke.

REFERENCES

1. Cestnik, B., Kononenko, I. and Bratko, I. (1987). Assistant: 86: a
knowledge-elicitation tool for sophisticated users. In Progress in machine learning:
proceedings of the EWSL 87: European working session on learning (eds I. Bratko
and N. Lavrac) pp. 31-45, Sigma Press, Wilmslow.

2. Dechter, R. and Michie, D. (1984). Induction of plans. TIRM 84-006, The Turing
Institute, Glasgow.

3. Doran, J. E. and Michie, D. (1966). Experiments with the Graph Traverser
program. Proc. R. Soc., 294, 235-59.

4. Dufay, B. and Latombe, J. C. (1983). An approach to automatic robot
programming based on inductive learning. In First Int. Symp. on Robotics Res.,
Bretton Woods.

5. Fikes, R. E. and Nilsson, N. J. (1971). STRIPS: a new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2, pp. 189-208.

6. Michie, D. and Chambers, R. A. (1968). BOXES: an experiment in adaptive
control. In Machine Intelligence 2 (eds E. Dale and D. Michie) pp. 137-52, Oliver
and Boyd, Edinburgh.

7. Mowforth, P. H. and Bratko, I. (1987). Al and robotics: flexibility and integration.
Robotica, 5,93-8.

8. Newell, A., Shaw, J. C. and Simon, H. A. (1960). A variety of intelligent learning in
a general problem solver. In Self-organising systems (eds Yovits Marshall C and
Scott Cameron) pp. 153-89. Pergamon, London.

9. Pearl, J. (1978). On the connection between the complexity and credibility of
inferred models. Int. J. General Systems, 4, pp. 255-64.

10. Quinlan, J. R. (1979). Discovering rules from large collection of examples: a case
study. In Expert Systems in the Micro Electronic Age, (ed. D. Michie). pp. 168-201,
Edinburgh University Press, Edinburgh.

11. Tate, B. A. (1976). Project planning using a hierarchical, non-linear planner.
Artificial Intelligence Research Report 25, Edinburgh University, Edinburgh.

12. Zrimec, T. (1986). Application of logic programming to task-level programming of
robots. In AFCET proceedings: Robot and artificial intelligence, Toulouse.

240

16

A Qualitative Way of Solving the Pole

Balancing Problem

A. Makarovic
University of Twente,
The Netherlands

Abstract

A method is presented for designing a control rule for the well-known
pole-cart system. Conventional techniques are used to model the pole-
cart system by a set of differential equations. The high complexity of the
model prohibits a direct derivation of the control rules. The model can
be simplified by restructuring and approximating the equations. We
allow very rough approximations, as long as the essence of the problem
stays the same. Ultimately we get a very simple model. Designing a
control rule for this model is an almost trivial problem.
This experiment underlines the theme that for solving problems, often

only a small part of the available information is really needed. By re-
formulating the problem and omitting the information that is not really
needed, we can reduce the complexity of the problem, with dispro-
portionate influence on the search space of potential solutions.

1. HISTORY

The pole balancing problem was used by Michie and Chambers (1968)
as a test case in the area of machine learning. Since then it has become a
widely accepted benchmark problem in this area of research.
During a working visit at the Jozef Stefan Institute in Ljubljana, Yugo-

slavia, the author was introduced to the pole balancing problem as a
means of investigating a qualitative simulator called QSIM (Kuipers
1986). After recognizing QSIM as not being an appropriate tool for deal-
ing with the pole balancing problem, the author successfully developed
his own approach. At that time a preliminary report was written
(Makarovic 1987). A more detailed description will be given here of the
way that the pole balancing problem was solved.

2. DESCRIPTION OF THE PROBLEM

A graphical illustration of the pole-cart system is given in Figure 1. A
pole is mounted on top of the cart. Optionally a second pole can be

241

SOLVING THE POLE BALANCING PROBLEM

Figure 1. The pole-cart system.

mounted on top of the first pole. All movements are in one plane, so the
problem is stated in a two-dimensional world. The problem is to balance
the poles by selecting the appropriate direction of the applied force. The
magnitude of the force is fixed and never zero. There are only two
possible actions one can select from: accelerating forward, or acceler-
ating backward. This type of control is often called 'bang-bang control',
because of its abrupt nature.
In order to be able to choose an appropriate action, the state of the

system must be known. Therefore the position and velocity of the cart,
and the angles and angular velocities of the poles are measured period-
ically. In fact such measurements only compare the value to be measured
with some reference values. All that is known after the measurement is in
which interval the value must be. Each variable has a private set of
reference values dividing its quantity space into typically only a few
intervals. Each time a measurement is performed, an appropriate action
has to be selected.
The pole balancing problem consists of

• how to divide the quantity space of each variable into a small set of
intervals;

• what action to select for each combination of intervals describing the
state of the pole-cart system

in a way such that

• the poles are balanced, i.e. do not fall;

• the cart does not leave a predetermined limited area.

242

MA KA ROV IC

See Michie and Chambers (1968), Makarovic (1987) and Sammut
(1988) for more information about the pole balancing problem.

3. MODELLING THE POLE-CART SYSTEM

By applying physical laws to the pole-cart system we can derive a set of
equations constraining the possible behaviours of that system. A
problem that can occur is that the initial set of constraints is not
complete. Completeness can be verified by comparing the number of
independent equations with the number of unknown variables. These
numbers must be equal because we know that the pole-cart system must
behave deterministically. Missing equations can be found by applying
the same technique on parts of the system.
The meaning of variables is as follows.

Relevant properties of the pole-cart system:

F: force acting [N]
G: gravity constant = 9.8 [m/s2]
0: angle of a pole relative to the vertical, anticlockwise positive [rad]
P: position [m]
M: mass [kg]
L: length [m]
Delay: time needed to reach the desired reference value [s]

Designator indicating part and direction of a property:

t: top of the pole
m: middle of the pole
b: bottom of the pole
x: horizontal component, positive to the right
y: vertical component, positive upward

Designator indicating the object:

0: the upper pole
1: the lower pole
c: the cart

Designator indicating a sub-property:

ref: the (positive) boundary dividing the quantity space
osc: the amplitude of oscillation

So for example Tbyo' means the upward component of the force acting on
the bottom part of the upper pole.
A set of physics laws constraining the behaviour of the pole-cart

system is set up. The forces acting:

243

SOLVING THE POLE BALANCING PROBLEM

Fix° =0 no external force acting on the top

Fly0 =0

Fnuo =0 no horizontal component of gravity
F„,y0 = — M0. G gravity

Fbx 0
Fbyo

Fix] = Fbx0 action = -reaction
= — Fbyo

F„,x1 =0
Fmyi = — All•G

Fbxl
Fby1

= Fx,applied— Fbxl
1'y, = — Fbyi + Fsupportmg= (1)

According to Newton, acceleration equals the sum of the forces
(torques) acting, divided by (rotational) mass. So for translations:

Ftxo Ftnxo Fhx0 Pmx0
Mo

6 Fty0+ Fmy0 + Fby°
my() M0

is'. Fix] Fmxl Fbxl
mx 1 — M 1 (2)

F,y1+ F,,,y1+ Fby,
Pmyl M1

=F,
Pxc

Mc

Pyc
Mc

and for rotations:

„ 1/2.4.(+ Fbxo cos 00 + Fbyo sin 00— F,x0 cos 00— F,y0 sin 00)
uo— 1/12.4•M0

(3)

6 -1 1/1244.4

1/24(+ Fbx cos 01 + Fbyi sin 01 Ft11 cos 01 — F,y1 sin 01) . -

(4)

The poles are interconnected so the position of the top part of the
lower pole must be equal to the position of the bottom part of the upper

244

MAKAROVIC

pole. Because the positions are always equal, the velocities and acceler-
ations must be equal as well.

P bx0 = P txl P bx0= ',x1 Pbx0=

"by() = P tyl 'by() = Ptyl 'by() = P tyl

P bx 1 = P mxc Pbx 1 — P mxc P bx 1 = Pmxc

P byl = P myc P byl = myc P byl = P myc

A pole is a rigid body, so there exists a fixed relation between the
positions of the top, middle, and bottom parts of a pole, and the angle of
that pole. Similar constraints can (and must) be derived for velocities
and accelerations of these parts.

(5)

Pao = Pm.“; 1/2.L0-sin 00
P,y0 = Prnyo + 1 /2.4. (1 —cos 00)
P bx0 — P mx0 1/2.Lo.sin 00
P by° = Pmy0— 1/2.4. (1 —cos 00)
P,x1= P„,x,— 1/2•LI.sin 0,
Pty, = P,m4+ 1/2.4 .(1 —cos 01)
P bx 1 = P,1 1/2.L, .sin
Pby, = Pm y,— 1/2.L, • (1 —cos 01)

4. VERIFICATION OF THE SOLUTION TO BE FOUND

(6)

It may seem strange to care about verification of a solution before the
solution itself is found, but this order makes finding a solution easier. If
we agree on a verification we can try to find a solution that satisfies the
verification and forget about the original problem. However, the verifi-
cation must be very reliable for this purpose.
The most convincing verification would be testing the control rule in

practice with a real pole-cart system. For practical reasons we agreed on
empirical verification with a numerical simulator of the pole-cart system.
In order to construct a numerical simulator we had to rewrite the

initial constraints as explicit differential equations, i.e. the highest
derivatives equal explicit functions of other variables, as shown below.

After tedious but straightforward manipulation, in which non-relevant
local variables were eliminated, we derived for the upper pole:

+ P„ cos 00+ G sin 00+

3M1+6M0
 cos(01 — 00)(P,cos01+ G sin 01) +
2M, + 6M0

3M0
2L0 sin(2(00 — 01))(q+

60= SemiConsto•

2M, + 6M0

—L1 sin(00 — 01) Oi

245
(7)

SOLVING THE POLE BALANCING PROBLEM

with:

SemiConsto —
(4M1+ (3 + 9 sin2(00 — 01))M0)L0

for the lower pole:

6M, + 18Mo

6, = SemiConstl •

with:

SemiConst, —

and for the cart:

. Fx,apphed

Mc

+ (MI+ 2M0)(Pwcos el+ G sin el) +

cos(00— 01)(P, cos 00+ G sin 0) +

sin(2(00— 01))6i +

+ MoLo sin(00— 01) OZ

6

(4M1 + (3 + 9 sin2(00— 01))M0)L1

5. REDUCING COMPLEXITY AND ADDING CAUSALITY

(8)

(9)

(10)

For finding a solution we prefer using the explicit differential equations
instead of the initial set of constraints. Both models describe the
behaviour of the pole-cart system equally well, but there are some other
differences. Unlike the initial set of constraints, the explicit differential
equations.

(1) are less complex;

(2) contain a kind of causal information implicit in their structure. This
extra information must be incorporated in the algorithm of the
numerical simulator.

Although the complexity is reduced considerably, the complexity of
the model is still much too high to derive a control rule. The causal
structure of the differential equations enables us to recognize which

interacting influences are comparable because of having similar effects.
Because of this extra knowledge we can distinguish between important
and less important influences. In the approximations developed below
influences of minor importance are neglected. Until now we have
simplified the structure of the equations as much as possible, without
sacrificing the accuracy of the model. The complexity, however, is still
much too high to be able to derive a control rule. From now on we will

246

MAKAROVIC

have to sacrifice some accuracy in order to reduce the complexity
further.

5.1. Hypothesis about the operating region

The pole-cart system is an unstable system. The simplest case is to keep
the system in equilibrium. Therefore we search for a solution where the
system is controlled in such a way that it will stay in a close region around
equilibrium. The system is in equilibrium when all angles, velocities, and
accelerations are zero.

5.2. Neglecting 0-dependency of SemiConst

Approximation The expressions denoted by SemiConsto and Semi-
Const, are approximated by real constants Consto and Const,.

Justification The dependency of SemiConst upon the angles (= (dSemi-
Const/d0)) is very small compared to the magnitude of SemiConst.

Effect The magnitude of the angular accelerations will be slightly smaller
in reality as predicted by the approximated model. The sign is never
affected.

So by now we have:

6M, + 18M0
Consto —

(4M1+ 3A10) • Lo

6
Const, —

(4M,+ 3M0) • L,

(12)

(13)

5.3. Neglecting the dependency of O's on o's
Approximation The last two terms of both equations (7) and (9) are

neglected, i.e. approximated by zero.

Justification All these terms contain a factor like sin(00— 01)• 62.
Because both angles and angular velocities are assumed small, that
whole factor is small small2= verysmall. The rest of these terms is
of the same order of magnitude as the terms not being neglected.

Effect The effect of this approximation is probably comparable with
rounding errors while computing O.

5.4. Approximating ugly functions

Approximation Goniometric functions are approximated by the first two
terms of the Taylor expansion, so cos(0) = 1 and sin(0) = 0.

Justification The operating region of 0 is supposed to be close to zero.

247

SOLVING THE POLE BALANCING PROBLEM

Effect The effect of this approximation is probably comparable with
rounding errors while computing O.

Doing all these approximations we get for the upper pole:

+Px,+ Geo+
6M1+ 18M()

60 — • 3M1 + 6M0 (14)
(4M1 + 34)4

2M1 +6M0
GO1)

and for the lower pole:

6 (+ (M, + 2M0)(13,+ GOO +)
61 — • (15)

(4M1 + 3M0)L, —3M0(P,+ G00)

Restructuring these equations results for the upper pole in:r(2m,.px,+3
eo • M, + 6M0) • G • 00+ (16)

(4M1 + 3M0)L0
(— 3M, — 6M0) • G • 00

and for the lower pole in:

6, —
3

(4M, + 3 Mo)L (
(2M1 +M0) • Px,+)

(2M1 + 4M0) • G• 01+

— 3M0 • G • 00

6. CHOOSING A MEANS OF CONTROL

(17)

In order to control the pole-cart system there must be a way of influenc-
ing it. The remaining influences of this system are analysed in what
follows:
Based on equations (16) and (17) a graphic representation of the

simplified pole-cart system is presented in Figure 2. In order to be able
to compare weight factors, we filled in the parameters of the pole-cart
system. We assume the poles having equal lengths (1 m) and equal
masses. The mass of the cart Mc. is large compared with the masses of the
poles. This model is called semi qualitative because it is very useful for
investigating the nature of the pole-cart system, but it is still too complex
for one to be able to derive a control rule from it.
We can recognize in this model that:

1. The acceleration of the cart is under direct control of the applied
force.

2. The acceleration of the cart directly influences the angular acceler-
ations of both poles. The influence upon the lower pole is three times
as great as upon the upper pole.

248

MAKAROVIC

Figure 2. Semi-qualitative model of the pole-cart system.

3. The angle of the lower pole influences the acceleration of the upper
pole.

4. The angle of the upper pole influences the acceleration of the lower
pole.

5. There are three positive feedback loops, causing the very unstable
nature of the poles.
(a) The angle of the upper pole positively influences the acceleration

of that pole.

(b) The angle of the lower pole positively influences the acceleration
of that pole.

(c) The angle of the lower pole negatively influences the acceleration
of the upper pole, and the angle of the upper pole negatively
influences the acceleration of-the lower pole. This is the reason
why the poles tend to fall in opposite directions.

So through the applied force we can control the acceleration of the
cart, but how should we control the angles of the poles? There are two
possibilities:

1. By controlling the acceleration of the cart we can control the lower
pole, and by controlling the lower pole we can control the upper pole.

9 27
+7 ;1 fdr • fdi --G ;,• (di • fth

rxc—* °I —+ °I 00—° °O

249

SOLVING THE POLE BALANCING PROBLEM

2. By controlling the acceleration of the cart we can control the upper
pole, and by controlling the upper pole we can control the lower pole.

A Pt A Pt

rxe "0 —*

Obviously the first alternative has a stronger means of control than the
second. Therefore we have selected the means of control indicated in
Figure 3.

Figure 3. Dominant path of control.

To summarize, the applied force, that is determined by the control rule
directly, causes the cart to accelerate. This acceleration (integrated over
time) influences the velocity of the cart, and that velocity influences the
position of the cart. The acceleration of the cart also influences the
angular accelerations of both poles. The angles of both poles influence
the angular accelerations of each other.
As a means of control we select-the strongest path of influence, i.e. the

lower pole controls the upper pole. By choosing a suitable operating
region we must assure that this path of influence is indeed dominant.

7. CONTROLLING THE CART WHILE BALANCING POLES

The next problem to be solved is that we have to control both the move-
ments of the cart and the movements of the poles, by using only one
control variable. So the problem seems to be over-determined and thus

250

MAKAROVIC

not solvable. However, a closer investigation of the poles reveals that
there is not only one unique equilibrium where all poles are oriented
vertically. When the cart is accelerating appropriately, both poles
(equally) askew can be in equilibrium as well. The solution to our
problem is that we do not balance the poles exactly around the vertical,
but slightly askew. On average the cart will accelerate to the right if the
poles are leaning to the right, and accelerate to the left if the poles are
leaning to the left. Note that this behaviour will only occur under the
assumptions made, i.e. the poles must be successfully balanced all the
time, as explained below.
By controlling the acceleration of the cart fix, both the angles of the

poles, and the position of the cart are influenced. While balancing the
poles, how do we prevent the cart from drifting away?
Therefore we have to investigate equations (16) and (17) again. The

poles being steady around the vertical is not a unique equilibrium. When
the poles are in equilibrium, by definition their angular accelerations
must be zero.

(—i*Pxc+

0=60= +247-• G. 00+ (18)

— 24•G • 01

(+91*

0=61 = —•G•00+ (19)

+ It • G • 01

So if the poles are in equilibrium we know that:

(20)

(The exact solution would be Oa 0, = tan(— (P„c/G)). This similarity
gives us some confidence that we have not made errors in the previous
derivations.) The solution to our control problem is that we do not
balance the successfully balanced poles exactly around the vertical, but
slightly askew, as stated earlier (see Figure 4).

8. CONTROLLING THE POLE-CART SYSTEM

The qualitative model we have by now is very simple. The applied force
influences the angular acceleration of the lower pole. The angle of the
lower pole influences the angular acceleration of the upper pole. The
angle of the upper pole influences the average acceleration of the cart. So

251

SOLVING THE POLE BALANCING PROBLEM

Figure 4. Modelling drift behaviour assuming successfully balanced poles.

we have one chain containing six integrators interconnected by weight

factors with different signs.

ft!, fat - c2 „.. fdt ,,. fat „ - c3 fdt ,„ fdt „
Fx, —L.- 4. 61 61 — uo uo uo rxc rxc rxc

Controlling one integrator can be done as follows: if the value at the

output is too high, decrease that value by putting a negative value at the

input of the integrator. If the value is too low, increase it with a positive

value at the input. Controlling a whole chain of integrators can be done

by recursively applying the above rule.
If the value of the position of the cart is too low we must increase that

value by making the velocity equal to a positive reference value. Because

of delay in control the cart will not stop immediately when reaching the

middle. In order to limit the overshoot (amplitude of oscillations) we

must limit the velocity as well. So even if the position is still too low but

the velocity has reached its reference value, we should not accelerate the

cart any more. This theory is not restricted to position and velocity, but

can be applied to other variables as well.
In order to prevent the cart from going outside its operating region, we

think it is safest to keep its position somewhere in the middle. We

consider this as our goal.
By recursively computing a sub-goal from the difference between the

current situation and the current goal, we can derive the ultimate sub-

goal. The ultimate sub-goal determines the sign of the force to be applied

on the cart. This sign is under direct control.

252

MAKAROVIC

Note that (only) the signs of the weight factors interconnecting the
integrator sections are of crucial importance for deriving the correct
control rule, as will appear in the more detailed recapitulation which
follows.

8.1. Controlling one integrator

Controlling one integrator is easy. As long as the outputvalue is too high,
decrease that value by putting a negative value on the input of that
integrator. If the output value is too low, then increase that value by
putting a positive value on the input.

8.2. Controlling a chain of integrators

By controlling the input of the first integrator, with some delay we can
control the output of that integrator. That output multiplied by a weight
factor is connected to the next integrator, so we get the same problem
back for a string that is one (integrator) element shorter. Recursively we
can propagate this means of control through the whole chain.

8.3. Dividing the quantity space

To be able to control an integrator we must know if the value at the
output is too high or too low, relative to a desired reference value. There-
fore we have to divide the quantity space of that output into two
intervals, the reference value being the boundary.
Now we will have to distinguish between integrators having a

successor and integrators having none. Integrators having a successor
are used for controlling their successor, and will therefore need both a
positive and a negative reference value. The integrator at the end only
has to stay within a predetermined region, the middle being the most
safe. So one reference value must be sufficient for that integrator.
So the quantity space of Px, is divided into two intervals called

'positive' and 'negative', zero being the boundary. The quantity spaces of
all the other variables are divided into three intervals, called 'big
positive', 'small' and 'big negative'. Each variable has two private
boundaries: + Varni and – Var. Because the problem is symmetrical
around 0 the solution should be symmetrical as well.

8.4. The control rule

As stated earlier, our qualitative model is:

„
Os —Os us.–~ uo~ ~ Os) rxc !Tv. rxe

Our goal is to keep the position of the cart somewhere in the middle,
thereby minimizing the risk of getting outside the predetermined region.

253

SOLVING THE POLE BALANCING PROBLEM

Pxc,ref = °

Pxc,ref= IPxc,refI'sign(Pxc,ref Pxc)

Pxc,ref = sign(Pxc,ref Pxc)

190.„f = It9ojefi • — sign(P ef)
00,,ef=100,refI:sign(00,,f — 00)

00,ref = 00)

91,ref=101.,fl• sign(0)ref)

01.ref =101,refl:Sign(01,ref — 01)

el,ref = Sign(01,ref — 01)

Fxc,applied =IFxc,appliedI* sign(et,ref)

goal
integrator control rule

integrator control rule

negative proportionality
integrator control rule

integrator control rule
negative proportionality

integrator control rule

integrator control rule

positive proportionality

(21)

Note that this control algorithm is very suitable for explanation. For each
subgoal you can tell why you try to achieve it, and how you try to achieve
it. This control algorithm can be written explicitly as, a control rule by
eliminating the sub-goals.

IF O —
IF 0,=
IF 0,=
THEN

big positive THEN Push Left
big negative THEN Push Right
small
IF 01 = big positive THEN Push Left
IF 01 =big negative THEN Push Right
IF 01 = small
THEN IF 0,)= big positive THEN Push Right

IF 0„ = big negative THEN Push Left
IF 00 = small
THEN IF 0„--- big positive THEN Push Right

IF 0„= big negative THEN Push Left
IF 00= small
THEN IF 15,, = big positive THEN Push Right

IF Pre= big negative THEN Push Left
IF /3„= small
THEN IF Pxr= positive THEN Push Right

IF 13,„.= negative THEN Push Left

9. CHOOSING SYSTEM PARAMETERS

By now we know that we must divide the quantity spaces of all variables
(except at the end of the string) into three regions: 'too negative', 'too
small', and 'too positive'. We also know which control decision to take in
each case. However, we do not know where exactly to choose the
boundaries of the intervals. A theory is now presented describing the
relationships between:

(1) the reference values;

(2) the sample rate;

(3) the promation-delay of Control;

254

MAKAROVIC

(4) the amplitude of oscillations.

Using this theory may help in finding a satisfactory compromise between
conflicting system properties.
In 1987, when the control rule was derived, this theory was not

developed that far. For a quick empirical verification of the control rule,
we used a guided 'trial and error' method for finding a suitable set of
system parameters. By studying the behaviour leading to a failure we
analysed the reasons of the failure. The intuitions behind the theory
given were used to find a better set of system parameters. After only a
few iterations the poles did not fall any more, and no long-term
dangerous tendencies could be observed.
However, we do not consider the set of system parameters obtained

this way, suitable to be used in a good (reliable) design. Objections
against such a 'trial and error' method are:

1. The safety margin of the solution found may be insufficient in prac-
tice.

2. It is dangerous to extrapolate from a finite simulation run to
characterizations involving behaviour of infinite duration.

3. It is impossible to test for all initial states in some operating regions.
Assuming continuity and smoothness when using a sampled bang-
bang controller may be dangerous as well.

4. It is unclear how much luck is involved in finding a solution. Little is
known about the existence of a solution and little is known about the
rate of convergence.

Based on the following theory, a better choice of system parameters
can be made.

9.1. A qualitative model of a controlled integrator

The basic rule for controlling an integrator is: put the positive input
reference on the input of the integrator if the output is too low, and the
negative input reference if the output is too high.

If there is some delay in contol then the output of the integrator will
oscillate (=periodically overshoot) around the desired output
reference. The amplitude of oscillation approximately equals the
distance that can be traversed at 'input reference' speed, during the delay
time. Except for the first integrator section, this is quite a pessimistic
approximation because the smooth transitions in reality are now being
modelled by abrupt transitions.

Xosc Iref • Delays (22)

When the control algorithm decides that it wants to change the sign of

255

SOLVING THE POLE BALANCING PROBLEM

the desired output reference value, this change will take some time to be
realized. The extra delay time needed for this change approximately
equals the distance between the output reference positions divided by
the 'input reference' velocity. Stated another way, the extra delay time is
proportional to the amplification of the integrator section. The delay
time relative to the control module is approximated by the sum of the
individual extra delay times of all the integrator sections (see Figure 5).

.X ,
Delayx

2
+ Delay (23)

ref

Delays

Xref

Xref
Delay, 2. + Delay s

A ref

Xref >>

• 'Delay,

_osc
Figure 5. Modelling delay time and amplitude of oscil ation (see (22) and (23) in text).

9.2. Consequences of control parameters on system properties

The successfully balanced pole-cart system can be modelled by a string
of connected integrators as shown in Figure 6.

60 00 XC Pxc
Sample
time

-Or •-.1 Settling
time

Applied
force

Amplitude of
oscillation

01,ref 01 ref &ref 0o ref Pxc,ref Pxc ref = 0

Figure 6. Delay time and oscillation in the pole-cart system.

In deriving our control rule we assumed our selected path of control to

be dominant. Now we have to choose the reference values in such a way

that this will indeed be the case.

2 G • 01 G • 640, (24)
Mc

+ 8 G • 00,ref
9 , G • 191,ref>

Mc

256

(25)

MAKAROVIC

If we assume that means at least two times greater, then we can derive
that:

F
: G • 0,,,,,j:G • 00,,,,f> 70:18:1 (26)

Mc

satisfying the above conditions. In this derivation we neglected the
influence of oscillations, therefore we have to keep:

0O,osc4 °O,ref

I ,ose ° I ,ref

The model represented by Figure 6 is a network of constraints
restricting the design choices of the reference values somewhat. The
remaining freedom can be used for finding a compromise of the desired
system properties. This model can provide us with a good qualitative
understanding of the consequences of the design choices, enabling us to
see which properties we have to choose between. We would like to
achieve with a low sample rate: a large operating region for the poles, a
limited amplitude of oscillation at the output, the output quickly reach-
ing its desired value, etc.
In order to keep the selected path of control dominant, the

amplification of some integrator sections must be limited. (G • 00,ref:G •
0 ref • .(Fxeref /Mc)-..1:18 :70.) However, the reference values must be
greater than the amplitudes of oscillation putting a lower boundary upon
amplification. In order for a solution to exist, the sample rate must be
sufficiently high.
Furthermore we assumed that sin(0) 0 and cos(0) 1. Therefore

01,ref should not be chosen too large, i.e. not much greater than 0.5
[Rad] 30[Deg].

If the combined amplification of a string of integrators is already
determined, choosing equal individual amplifications will introduce less
delay than choosing totally different amplifications.

(27)

10. CONCLUSIONS

1. Our approach of problem solving by using qualitative models is
successful for finding a solution of the pole balancing problem. We
showed how to control a pole-cart system with two approximately
equal poles stacked on each other.

2. The qualitative models created are very suitable for explanation.
They provide us with a good understanding of how the pole-cart
system behaves, and why our control rule should be as it is.

257

SOLVING THE POLE BALANCING PROBLEM

3. On both theoretical and empirical grounds we have some confidence
that our control rule is correct if we satisfy the assumptions made.

4. The assumptions made have to be satisfied by choosing suitable
system parameters like:

(a) the magnitude of the applied force;
(a) the reference values used for comparison in measurements;
(c) sample rate;
(d) the operating region;

We have both theoretical and empirical evidence that these assump-
tions can be satisfied for two equal poles. If the upper pole is made
shorter, relative to the lower pole, satisfying these assumptions will be
more difficult and may become impossible.

5. Changing the length and mass of the poles will change the strength of
the interacting influences in the pole-cart system. Shortening the
upper pole too much may change the dominant path of influence, and
may therefore change the choice of the selected path of control. This
would result in other qualitative models, resulting in another control
rule and other assumptions to be satisfied.

6. A really good set of system parameters still has to be found. The
theory presented may be helpful for finding such a set.

REFERENCES

Kuipers, B. (1986). Qualitative simulation. Artificial Intelligence 29, pp. 289-338.
Makarovic, A. (1987). Pole balancing as a benchmark problem for qualitative
modelling. 1987 Internal Report number 4953 Jozef Stefan Institute, Ljubljana,
Yugoslavia.

Michie, D. and Chambers, R. A. (1968). Boxes: an experiment in adaptive control.
Machine Intelligence 1, pp. 137-52 Edinburgh University Press.

Sammut, C. (1988). Experimental results from an evaluation of algorithms that learn to
control dynamic systems. Proc. Fifth Intern. Conf Machine Learning (ed. J. Laird)
Morgan Kaufmann.

258

17

Varying Levels of Abstraction in

Qualitative Modelling

I. Mozetiat
J. Stefan Institute

I. Bratko
E. KardeIj University and J. Stefan Institute

T. Urbanaia
J. Stefan Institute

Abstract

We describe a formalism for hierarchically representing qualitative
models at various levels of abstraction. The formalism is based on logic,
namely on typed Horn clauses also known as database clauses. The
notion of abstraction is realized through a hierarchy of types for the
domains of predicates. The abstraction hierarchy can be used in gener-
ating explanations with an adjustable degree of detail; also in improving
search efficiency in solving tasks of diagnosis and control, as well as the
learning of qualitative models. Results obtained at a simpler, more
abstract level, can be used to guide the search at a more detailed and
combinatorially more complex level. The corresponding algorithms are
presented as PROLOG programs and their behaviour studied on example
problems including a qualitative model of the heart.

1. INTRODUCTION

Deep knowledge which takes into account underlying principles of a
problem domain enables 'reasoning from first principles'. This helps to
alleviate the knowledge acquisition bottleneck, improves robustness,
achieves clearer semantics and better explanation capabilities of expert
systems (e.g. Steels 1985). In this respect, knowledge representation in
the form of a qualitative model is particularly important.
In this paper we investigate a representation formalism with a particu-

lar view on qualitative modelling. In our approach, a model is defined by
its structure (a set of components and their connections) and the
functions of its constituent components. The model may be in different
qualitative states (defined by the states of the components) which

tPresent address: Austrian Research Institute for Artificial Intelligence, Vienna,
Austria.

259

LEVELS OF ABSTRACTION IN QUALITATIVE MODELLING

indicate regions where some laws of behaviour are valid. The model
accepts some input and, depending on the state, transforms it into
output. For example, a model of a pressure regulator (as defined in
de Kleer and Brown 1984) consists of a valve and a pressure sensor. The
state of the regulator is defined solely by the state of the valve which is
either closed, working, or open. The values of the air pressure and flow
at input are transformed into the output values, depending on the
qualitative state of the regulator. In this paper we are concerned only
with the behaviour of a model within a qualitative state. We do not
consider possible transitions between different states over a period of
time, usually called 'envisioning' (de Kleer and Brown 1984).
A model of a device can be used in various tasks, such as simulation,

diagnosis, or control. Formally, the simulation task is to derive an output
from a given input and state of the model. The diagnostic task is the
opposite: given an input and an output, find all possible states that may
produce the given behaviour. This assumes that the presence of faults in
a system is modelled through its internal states. Models are usually not
designed directly for diagnosis and are therefore often unsuitable for
direct use for this purpose; typically, the problem with diagnostic
reasoning is its combinatorial complexity.
The simplest method of using a model for diagnosis is based on the

'generate and test' problem-solving strategy. This method generates
potential solutions (possible states) and tests for given input—output
behaviour. This method is very inefficient if the number of possible
states is large, e.g. in the case of multiple faults.
In the paper we suggest two methods to improve the diagnostic

efficiency as compared with the naïve 'generate and test' approach. The
first method represents a model on several levels of abstraction, and
takes advantage of hierarchies to reduce the space of potential solutions.
The problem is first solved at a simpler, more abstract level. This coarse
solution is then used to guide the search at more detailed levels. The
abstraction hierarchy also provides better explanation and offers a
trade-off between the diagnostic time and the specificity of diagnoses.
The second method takes advantage of knowledge representation based
on logic which enables direct execution of a model in the 'backward'
direction.
Both methods were developed, implemented, and successfully tested

in the domain of the KARIN() expert system (Bratko, Mozetic, and Lavrac
1989). The task in question was the diagnosis of cardiac arrhythmias
from electrocardiographic (Eco) descriptions. A brief overview is given
below. An expert system for ECG diagnosis was under development
based on rules directly relating arrhythmias to the corresponding ECG
descriptions (Lavrac et al. 1985). However, due to the combinatorial
nature of muItiple disorders that may occur simultaneously in the heart,

260

MOZETIC, BRATKO, AND URBANCIC

we were not able to construct a complete knowledge base. For that
reason, we have manually developed a qualitative model of the heart that
simulates its electrical activity. The model was used for automatic
derivation of a complete rule base, relating 2419 heart disorders to
140,969 ECG descriptions (Bratko, Mozetic, and Lavrac 1989). Owing to
its space complexity this knowledge base is awkward for direct use. It
was therefore compressed by means of learning-from-examples'
techniques into an operational base of diagnostic rules approximately 30
times smaller (Mozetic 1986). Here, the model was used for diagnosis in
an indirect way. The next step was to make deep knowledge, represented
as a qualitative model, operational by itself. The idea was to achieve
operationality by introducing abstraction hierarchy into the model. For
the sake of this research, we have used a small, but still complicated
subset of this complex diagnostic domain. Most of the material
presented here is adapted from Mozetic (1988).
In the following section, we define a logic-based formalism for repre-

senting single-level and hierarchical qualitative models. Section 3
describes model interpretation with emphasis on the use of a hier-
archical model for diagnosis. In Section 4 experiments and results using
the model of the heart are presented. Section 5 demonstrates how the
idea of hierarchical diagnosis can be used for solving equations. Conclu-
sions are set out in Section 6.

2. REPRESENTING QUALITATIVE MODELS

As opposed to the process-oriented approach to qualitative modelling
(Forbus 1984) we take the component-oriented approach. We represent
a model as a structure, defined by a set of components and their inter-
connections. The model's behaviour is defined solely by its structure and
the behaviour of its components (de Kleer and Brown 1984). A model
has an internal qualitative state and is connected to the environment.
The state of the model is defined by qualitative states of its components
and denotes a range where some laws of behaviour are valid. A model
accepts an input from its environment, and transforms it to the output,
depending on its qualitative state.

Representation in the system is based on the deductive hierarchical
database formalism (Mozetic 1987a). A qualitative model consists of a
hierarchy of non-recursive database clauses. A database clause is a typed
Horn clause, augmented with negation that may be used in the body of
the clause (Lloyd and Topor 1985). Database clauses are typed in that
the domains for predicate arguments are defined. Domains are sets of
(possibly structured) values. Domains are finite which helps to imple-
ment negation correctly (unlike standard PROLOG) in the body of a
clause. The set of clauses must be non-recursive where indirect (cyclic)

261

LEVELS OF ABSTRACTION IN QUALITATIVE MODELLING

recursion is not allowed either. This non-recursive property is referred
to as hierarchy by Lloyd and Topor (1985). In this paper, however,
hierarchy refers to levels of abstraction. The interpreter used is an
extension of the standard PROLOG interpreter (Lloyd 1984) that
correctly handles negation, types, and different goal selection strategies.
In the following paragraphs we look first at representing a model at a
single level, and then introduce the abstraction hierarchies.

2.1. One-level representation

A single-level qualitative model is defined by:

(1) the structure of the model;

(2) functions of its constituent components;

(3) utility predicates.

The structure is defined by a set of components and their connections.
The structure can be viewed as an undirected graph. It is represented by
a database clause. The head of the clause denotes a relation between a
qualitative state of the model, an input, and an output from the model. In
the body of the clause (a conjunction of literals), each literal corresponds
to a component of the model, and shared variables between literals
represent connections between components. The qualitative state can be
used to model, for example, different operational regions of a device (e.g.
a closed valve or an open valve), or internal faults under which the
behaviour of the device changes. The literals in the body of the clause are
assumed to be ordered in a way that reflects the propagation of input
parameters throughout the graph towards the outputs. This ordering can
be associated with causal chains of events. However, such an ordering is
in our formalism only a convenience and is not necessary in principle.
For some systems, where signals propagate cyclically in all directions,
there is no such natural input—output ordering. In such cases several
orderings are equally suitable.
As an example we take a model of the pressure regulator (de Kleer and

Brown 1984). The regulator consists of a valve and a pressure sensor
(Figure 1). Variables Q, P, and X denote changes in the air flow,
pressure, and the valve area, respectively. As in de Kleer and Brown
(1984) we choose the ordered set { —, 0, + } as the quantity space for
these variables. Table 1 gives the laws for qualitative addition and
negation on this quantity space.
The structure of the model is defined by two components (valve and

sensor) and their interconnections:

regulator(State, Pi, Qi, Po, Qo)
, valve(State, Pi, Qi, X, Po, Qo),

sensor(Po, Qo, X).

262

MOZETIC, BRATKO, AND URBANCIC

Pi

Qi

sensor

X

valve:
State

 Po

Qo

Figure 1. A pressure regulator. Variables Pi and Qi denote changes in the input
pressure and flow, X denotes change in the valve area, and Po and Qo denote changes
in the output pressure and flow, respectively. The bottom diagram represents the
structure of the regulator, i.e. a set of components and their interconnections.

Table I. Qualitative addition and negation.

X
Y+

0
X

0
—,0,+

-x

The qualitative state of the regulator is defined only by the state of the
valve which may be 'open', 'closed', or 'working'. It depends on the area
for flow in the valve: the valve is either completely open (state 'open') or
completely closed (no flow, state 'closed') or between (state ̀ working'). If
the valve is completely closed there is no flow change (and no flow
either):

valve(closed, Pi,Qi, X, Po, Qo) —
Qi =0,)̀/0 no change in in-flow
Qo =0. % no change in out-flow

If the valve is completely open then any change in pressure or flow at the
output is the same as the change at the input:

valve(open, Pi, Qi, X, Po, Qo) —
Pi = Po,
Qi = Qo.

However, if the valve is 'working' (between closed and open), then its

263

LEVELS OF ABSTRACTION IN QUALITATIVE MODELLING

behaviour is determined by the following relations between the
variables:

valve(working, Pi, Qi, X, Po, Qo) (-
Pi - Po = Pio, % Pio is a drop of pressure from input to output
Pio + X = Qi, % in-flow is proportional to the pressure

% drop and area of the valve
Qi = Qo, % conservation of flow
Qo = Po. `)/0 out-flow is qualitatively proportional to

pressure

The sensor takes care that any change in the area of the valve is inversely
proportional to the change in the output pressure:

sensor(Po, Qo, X)
X= -Po.

The definition of types of predicate argument could be as follows:

type(regulator(state, quantity, quantity, quantity, quantity)).
type(valve(state, quantity, quantity, quantity, quantity, quantity)).
type(sensor(quantity, quantity, quantity)).
domain(state, [closed, working, open]).
domain(quantity, [- , 0, +]).

A qualitative simulation yields the model's behaviour under given
conditions. For example, assume that the pressure regulator is in the
state 'working' and that the input pressure is increasing (Pi = +). Then
the results of simulation are the following variable values which satisfy
the above relations:

Qi = +
Qo = +
X = -
Po = +
Pio = +

The interpretation of these results reveals that the output pressure and
flow (Po, Qo) are increasing, while the valve area (X) is decreasing. The
result is perhaps not quite as expected, namely, that the output pressure
is constant. However, the simulation shows that the input pressure is
increasing faster than the output pressure, since their difference (Pio) is
increasing.
This simple example also demonstrates some advantages of a deep

model with respect to 'surface models'. A model makes possible a causal
explanation of the device's behaviour (e.g. the pressure affects the valve
area, and the latter affects the flow through the valve). Further, a model
may contain meaningful concepts which become meaningless when the

264

MOZETIC, BRATKO, AND URBANCIC

structure of the model is unknown (e.g. the area of the valve). In the case
of the pressure regulator, if we omit the flow, the following are examples
of two 'surface' rules:

State = working, Pi = + Po = +
State = working, Pi = 0 Po = 0

The first rule states that if the regulator is 'working' and the intput
pressure is increasing then the output pressure is increasing as well.
However, the rule does not explain why this is so, nor that the input
pressure is increasing faster than the output pressure.
Notice that the regulator model in the foregoing example is a single-

level model although the regulator is composed of a valve and a sensor.
We consider abstraction hiearchy in the next section.

2.2. Hierarchy of models

It is useful to represent a qualitative model at several levels of abstrac-
tion. In this case a model consists of a hierarchy of single-level models,
where the top model is the most abstract (also the simplest), and the
bottom model in the hierarchy is the most detailed (also the most com-
plicated one). A hierarchy of models improves the efficiency of model
interpretation when we use the model for diagnosis, and may also
improve the explanation capabilities of the system.
As an example let us consider a very abstract model of the electrical

activity in the heart. From this extremely abstract view, the heart is
simply a box which consists of a generator of electrical impulses (giving
the pace of the heart), and these impulses cause, through another
component, some external manifestation, called ECG (see Figure 2).

heart: Arrhythmia

gen_imp:
Arrhythmia

imp_ecg 1-4—*ECO

Figure 2. A very abstract model of the heart.

The heart can suffer from an arrhythmia which can be modelled as an
internal state of the generator of impulses which affects its behaviour.
The model consists of only two components: a generator of impulses
(gen_imp) and a generator of ECG descriptions (imp_ecg). The model
has no input and relates any state of the heart (Arrhythmia) to the output
(Eco):

265

LEVELS OF ABSTRACTION IN QUALITATIVE MODELLING

heart(Arrhythmia, ECG)
gen_imp(Arrhythmia, Impulse),
imp_ecg(Impulse, ECG).

The function of the impulse generator may be represented by two
ground unit clauses:

gen_imp(slow_rhythm, under_60).
gen_imp(fast_rhythm, over_60).

A definition of the generator of ECG descriptions completes the example.
Note that here 'Rate' denotes a universally quantified variable:

imp_ecg(Rate, Rate).

The above model of the heart is extremely simple. If the user wants to
push the level of detail in representation, the system allows him to:

(1) specify more detailed structure, replacing a component in the model
by a set of components (Figure 3);

(2) refine values of variables by defining hierarchies of values (Figure
4);

'Abstract

Detailed

gen_imp.
Arrhythmia

atria: Atr

imp_ecg

av_node: AV

summator

atr_ecg

ventricles: Vent

vent_ecg

ECG

 P_wave

Figure 3. Refinement of the model's structure.

fast_rhythm

atr_rhythnt atr_tachy vent_rhythm vent_tachy

slow_rhythm under_60

atr_brady vent_brady zero zero_60

Figure 4. Examples of hierarchies.

266

Rate

MOZETIC, BRATKO, AND URBANCIC

(3) introduce new variables, not relevant at the more abstract level.

In the more detailed model shown in Figure 3, the heart consists of the
atria, the ventricles, and the AV (atrio-ventricular) node which conducts
impulses from the atria to the ventricles. Further, in the ECG, not only is
the rate of heartbeats of interest, but the presence of the P-wave as well.
The more detailed structure of the model is represented by the follow-

ing clause:

heart(arr(Atr,AV,Vent), ecg(P_wave, Rate)) — (1)
atria(Atr, ImpAtr),
av_node(AV, ImpAtr, ImpHis),
ventricles(Vent, ImpVent0),
summator(Imp VentO, ImpHis, Imp Vent),
atr_ecg(ImpAtr, P_wave),
vent_ecg(Imp Vent, Rate).

Types of arguments for all predicates in the model definition must be
specified. Each type defines a set of terms, i.e. the domain of some
variable. A term is either simple (a constant) or compound (a functor
applied to a number of arguments). For example, at the abstract level,
there are only two possible states (simple arrhythmias), while at the
detailed level the state of the heart is defined by the states of the atria, the
AV node and the ventricles:

type(heart(arr, ecg)).

Abstract:

domain(arr, [slow_rhythm, fast_rhythm]).

Detailed:

domain(arr, arr(atr, av, vent)).
domain(atr, [quiet,atr_brady,atr_rhythm,atr_tachy]).
domain(av, [normal, av_block]).
domain(vent, [quiet,vent_brady,vent_rhythm,vent_tachy]).

Hierarchies of terms specify relations between values on the abstract
and detailed levels. Note that the abstract level is incomplete with
respect to the detailed level in our case, since it does not contain it
properly (e.g. there is no notion of impulse conduction on the abstract
level). However, it is required that the detailed level is consistent with the
abstract level (Mozetic 1990).
The definition of the detailed model is completed when functions of its

components are defined. In our case we have:

267

LEVELS OF ABSTRACTION IN QUALITATIVE MODELLING

atria(quiet, zero).
atria(atr_brady, zero_60).
atria(atr_rhythm, 60_100). (2)
atria(atr_tachy, over_100).

av_node(normal, Rate 1, Ratel). (3)
av_node(av_block, Ratel, Ratel). (4)
av_node(av_block, Ratel, Rate2) (5)
succ(Rate2, Ratel),
Rate2 : = zero_60 v 60_100.

ventricles(quiet, zero).
ventricles(vent_brady, zero_60). (6)
ventricles(vent_rhythm, 60_100). (7)
ventricles(vent_tachy, over_100).

summator(zero, zero, zero).
summator(zero, Rate, Rate) 4-- - (Rate = zero). (8)
summator(Rate, zero, zero) — - (Rate = zero). (9)

atr_ecg(Rate, present) - (Rate = zero). (10)
atr_ecg(zero, absent).

vent_ecg(Rate, Rate). (11)

We can specify some background knowledge in the form of utility
predicates that may be used in a component definition. For example, the
following utility predicate defines the ordering of rates:

succ(zero, zero_60).
succ(zero_60, 60_100).
succ(60_100, over_100).

3. INTERPRETING QUALITATIVE MODELS

The representation of a model based on logic has an important property
in that it involves relations. In computation, relations can be used in any
direction. If X and Y are in some relation r, written in the model as
r(X,Y), one can determine Y given X, and X given Y as well. For that
reason, the same relation-based model can be used in both directions:
for 'forward' and 'backward' reasoning. Forward reasoning is realized
with the left-to-right goal selection strategy (as in standard PROLOG) and
is usually suitable for simulation. Backward reasoning is realized with
the right-to-left goal selection strategy and can be used for diagnosis.

3.1. Hierarchical diagnosis

Hierarchical diagnosis is based on the representation of a model on

268

MOZETIC, BRATKO, AND URBANCIC

several levels of abstraction. The basic idea behind the method is to
move the 'greedy' search from a detailed to an abstract level of the
model. Diagnosis at the abstract level is less precise, but easier because
of the simplicity of the model at this level. More detailed diagnoses are
obtained through simulation at the detailed level. An illustration of the
method is given in Figure 5. This illustration is concerned with the
particular diagnostic task of finding arrhythmias for a given electro-
cardiogram.

3
Abstract Level 1: Arr ---). ECG

I 5

12

Level 2: Arr ---). ECG

61 Il

7
Detailed Level 3: Arr),- ECG

Figure 5. A scheme of hierarchical diagnosis.

Given a detailed ECG, the diagnostic algorithm climbs the hierarchies
of values to find a more abstract ECG (steps 1, 2). The algorithm uses the
model at the abstract level to find an arrhythmia that can actually
produce the abstract ECG (step 3). If more detailed diagnosis is required,
the algorithm uses hierarchies to consider further only arrhythmias that
are below the abstract arrhythmia in the hierarchy (steps 4, 6). Poten-
tially possible detailed arrhythmias are then verified by means of simu-
lation to check that they actually produce the corresponding ECG (steps
5, 7). If another diagnosis is required, the algorithm backtracks, until
there are no more possible arrhythmias.
Our model representation formalism allows for an abstract level to be

incomplete with respect to the detailed level. In such a case the algorithm
cannot take the advantage of hierarchies. In the degenerate case of total
incompleteness, the method is in fact reduced to the naïve 'generate and
test' strategy.
The diagnostic algorithm below is written in standard PROLOG. For a

given level of the model and output from the model the procedure
'diagnose(Level, Out, In)' finds a corresponding input of the model (In).
The problem is formally the same when, for a given output, either an
input or an internal state is to be found. The procedure consists of two
clauses. The first clause deals with the case when there are hierarchies,
and the second clause deals with all instances of inputs or states that do
not have abstract counterparts at the given level of abstraction:

269

its—

LEVELS OF ABSTRACTION IN QUALITATIVE MODELLING

diagnose(Level, Out, In)
Level > 1, Level() is Level — 1,
type(model(InType, OutType)),
hierarchy(Level°, OutType, OutO, Out), % level up
diagnose(Leve10, Out°, m°),
hierarchy(Leve10, InType, In°, In), % level down
verify(Level, In, Out).

diagnose(Level, Out, In) .-
no_abstract(Level, In), % there is no abstraction
verify(Level, In, Out).

The procedure 'verify' verifies whether a given input (or state) really
causes a given output on a specified level of abstraction. In the simplest
case, the procedure may be equivalent to the simulation algorithm:

verify(Level, In, Out) —
simulate(Level, In, Out).

Instances of inputs or states that do not have any abstractions may be
either explicitly stated or can be computed, for example:

no_abstract(Level, In) 4-
Level° is Level— 1,
type(model(InType, _)),
not hierarchy(Level°, InType, , In).

The following example illustrates the method. The model under con-
sideration is our previous detailed model of the heart. The task is to find
an arrhythmia, given the following ECG description: ̀P_wave' is 'present',
'Rate' is ̀ zero_60':

Detailed ECG = ecg(present, zero_60)

Given a detailed ECG, the diagnostic algorithm climbs the hierarchies of
values (Figure 4) to find more abstract Ecc's:

Abstract ECG = under_60

The algorithm uses the model at the abstract level to find an arrhythmia
that actually produces this particular abstract ECG. The following
arrhythmia is obtained by means of the 'generate and test' method:

Abstract Arr = slow_rhythm

To find more detailed diagnoses, the algorithm uses hierarchies to
consider further only arrhythmias that are in the hierarchy under the
abstract arrhythmia `slow_rhythm' (Figure 4) and satisfy given
constraints over the states of the heart. Constraints specify which

270

MOZETIC, BRATKO, AND URBANCIC

(multiple) arrhythmias are physiologically possible and medically inter-
esting. Potentially possible detailed arrhythmias are then verified by
means of simulation:

Detailed Arr =
arr(atr_brady, normal, quiet) SUCCEEDS
arr(quiet, normal, vent_brady) FAILS

The following arrhythmias are not considered at all since they are not
under the hierarchy of ̀slow_rhythnf:

Detailed Arr =
arr(atr_rhythm, normal, quiet)
arr(atr_tachy, normal, quiet)
arr(quiet, normal, vent_rhythm)
arr(quiet, normal, vent_tachy)

However, the abstract level is incomplete, meaning that there are some
detailed arrhythmias that do not have corresponding abstractions:

no_abstract(2, arr(, av_block, _))

They have to be explicitly verified:

Detailed Arr =
arr(atr_brady, av_block, quiet) SUCCEEDS
arr(atr_rhythm, av_block, quiet) SUCCEEDS
arr(atr_tachy, av_block, quiet) FAILS

As compared to naïve diagnosis, in this example the search space was
reduced by almost one half.

3.2. Backward diagnosis

As already mentioned, the standard PROLOG interpreter uses a left-to-
right goal selection strategy. In the case of diagnosis, the output is given
and the state of the model has to be found. The use of components as
constraints in the inverse direction better suits this problem. In logic
programming terminology, this is the right-to-left goal selection strategy.
To illustrate this method, let us consider the same example as in the

previous section. Find an arrythmia, given:

ECG = ecg(present, zero_60)

The interpreter is given the following goal

heart(Arr, ecg(present, zero_60))

271

LEVELS OF ABSTRACTION IN QUALITATIVE MODELLING

in order to find an arrhythmia that causes the given ECG. The interpreter
unifies the goal with the head of clause 1 and replaces the goal with the
body of clause 1. Since the right-to-left goal selection strategy is used, the
last (rightmost) subgoal of the clause 1 is selected next. The following is a
trace of the first (unsuccessful) derivation:

vent_ecg(zero_60, zero_60)
atr_ecg(over_100, present)
summator(zero, zero_60, zero_60)
ventricles(quiet, zero)
av_node(av_block, over_100, zero_60)
FAILURE

The last subgoal cannot be satisfied since it cannot be unified with the
heads of clauses 3 and 4, and the condition in the body of clause 5 cannot
be satisfied either. However, the reason for failure is actually in clause
10, since for the second subgoal 'atr_ecg(Rate, present)', the interpreter
has to make a non-deterministic choice for the variable Rate, other than
'zero'. The first choice above ('over_100') leads to failure, therefore the
interpreter backtracks to the last point of non-determinism and tries the
next possible choice:

summator(zero_60, zero, zero_60)
ventricles(vent_brady, zero_60)
av_node(av_block, over_100, zero)
FAILURE

Again, failure occurs since clause 9 was used instead of clause 8. The
system backtracks again and chooses the next possible value for 'Rate'
which now gets the value '60_100'. Now, the derivation is successful:

atr_ecg(60_100, present)
summator(zero, zero_60, zero_60)
ventricles(quiet, zero)
av_node(av_block, 60_100, zero_60)
atria(atr_rhythm, 60_100)
SUCCESS

Since the initial goal was satisfied, the interpreter returns the substitution
of the free variable (Arr) in the question:

Arr = arr(atr_rhythm, av_block, quiet)

Two other possible diagnoses are obtained through backtracking in the
same manner:

Arr = arr(atr_brady, normal, quiet)
Arr = arr(atr_brady, av_block, quiet)

272

MOZETIC, BRATKO, AND URBANCIC

4. EXPERIMENTS AND RESULTS

The model representation and diagnostic methods described in this
paper were used in an implementation of a subset of the KARDIO model
for ECG diagnosis. The system embodies a model of the heart,
represented on three levels of abstraction. Table 2 gives the complexity
of the model at each level, with respect to the number of its constituent
components, the number of possible states of the model (arrhythmias),
and outputs from the model (ECG descriptions). The fourth column in the
table indicates the number of arrhythmias that do not have a corre-
sponding abstraction at the higher level, i.e. that are unique to the model
at the detailed level.

Table 2. Complexity of the heart model used in the experiments.

Level of States (Arr) States (Arr) Outputs
abstract Components All No abstract (Ecu)

1 2 3 3 3
2 9 18 3 38
3 16 175 85 333

4.1. An example of hierarchical diagnosis

Hierarchical diagnosis offers a tradeoff between the specificity of
diagnoses, certainty (the number of alternatives), and the time one is
willing to wait for an answer. This is closely related to the idea of
Variable Precision Logic (Michalski and Winston 1986).
A detailed ECG description at the third level of abstraction is given

below:

Ecg3= [P= abnormal, Rate_P= b_100_250, P_QRS = always_QRS,
PR = shortened, Rhythm = regular, QRS = normal,
Rate_QRS = b_100_250]

The user is interested in all possible diagnoses. The hierarchical diag-
nostics algorithm first finds corresponding abstract ECG descriptions (at
the second and first level of abstraction):

Ecg2= [P = present, P_QRS = always_QRS, QRS = narrow,
Rate = over_100]

Ecg, = [Rate = more_than_100]

The following ECG hierarchies are used:

P2: present QRS2: narrow
/\ / I \

P3: normal abnormal QRS3: normal delta_R delta_L

273

LEVELS OF ABSTRACTION IN QUALITATIVE MODELLING

Rate,: more_than_100

Rate2: over_100
/ IN

Rate3: b_100_250 b_250_350 over_350

The algorithm uses the model of the heart represented on all three levels
of abstraction and the following hierarchies of arrhythmias:

fast_rhythm

Arr2: sv_tachy iv_tachy no_block
/ I \ /\ \ N

Arr3: st mat at jt vt normal lgl wpw avb 1

When interacting with the system the user first gets abstract diagnoses,
and if the time allows, these are refined in more detail and more alterna-
tive diagnoses are produced. In the following (paraphrased) dialogue
with the system, the user responses are underlined. The essential infor-
mation in the system's diagnoses is in bold typeface, and these essential
pieces of information are expanded into corresponding medical terms.

Possible diagnoses:
> Arri = fast_rhythm

tachycardia

Do you want a more detailed diagnosis? yes
> > Arr2 = arr(sv_tachy, no_block, quiet)

supra-ventricular tachycardia

Do you want a more detailed diagnosis? yes
> > > Arr3 = arr(sv(quiet, at), normal, iv(quiet, normal, quiet))

atrial tachycardia

Do you want an alternative diagnosis? yes
> > > Arr3 = arr(sv(quiet, at), lgl, iv(quiet, normal, quiet))

atrial tachycardia with LGL syndrome

Do you want an alternative diagnosis? yes
> > Arr2= arr(quiet, no_block, iv_tachy)

intra-ventricular tachycardia

Do you want a more detailed diagnosis? yes
> > > Arr3 = arr(sv(quiet, quiet), normal, iv(jt, normal, quiet))

junctional tachycardia

Do you want an alternative diagnosis? yes.
There are no more possible diagnoses!

274

MOZETIC, BRATKO, AND URBANCIC

4.2. Diagnostic efficiency

Experiments to compare the efficiency of different diagnostic methods
were carried out with the model at the third level of abstraction. We
compared:

(1) the naïve 'generate and test' method;

(2) hierarchical diagnosis with simulation;

(3) one-level backward diagnosis;

(4) a combined method using hierarchical diagnosis (when there are
abstractions) and backward diagnosis (for arrhythmias that do not
have corresponding abstraction).

A randomly selected subset of 12 ECG descriptions was used to
measure the time that each method needed to find possible arrhythmias.
Table 3 gives average times needed to find the first and the rest of
possible arrhythmias. The analysis of results revealed that times were
dependent on whether the possible arrhythmia has an abstraction or not.
Therefore, four more columns are included in Table 3, two for each case.
The first column in each category indicates the time needed to find the
first arrhythmia, and the second column indicates the further time that
was spent until all possibilities were exhausted.
The results show that the naïve 'generate and test' diagnosis can be

considerably improved. Hierarchical diagnosis is much faster when it
can take the advantage of abstractions (consider the 5th column, 32 sec.
vs. 313 sec.). Even when the arrhythmia that is actually possible does not
have the abstraction, the search space is reduced (3rd and 4th column
together, 460 sec. vs 802 sec.). Backward diagnosis is the most efficient
in this model, but mostly due to the relatively large number of specific
diagnoses without abstractions. When there are abstractions, hier-
archical diagnosis with simulation is not much slower than backwards
diagnosis.

Table 3. Average times (in CPU seconds on VAX 11/750) for
different diagnostic methods implemented in interpreted PROLOG.

Category 1
Together

Category 2
No abstract

Category 3
Abstract

Diagnostic (12 cases) (3 cases) (9 cases)
method First Rest First Rest First Rest

Naïve 305 500 283 519 313 493
Hierarchical 108 408 335 125 32 502
Backward 50 34 160 40 14 32
Combined 68 92 172 44 33 108

275

LEVELS OF ABSTRACTION IN QUALITATIVE MODELLING

Here it should be stressed that relatively large absolute times needed
for diagnosis (a few minutes) are not inherent to the problem. They are
due to the inefficient model interpreter (written in C-PROLOG inter-
preter) and could be reduced at least by a factor of 100 with compiled
PROLOG. Results of recent experiments with compiled Quintus Prolog
and the heart model represented at 4 levels of abstraction (Mozetic
1990) show a speed-up of a factor of 200.

5. ANOTHER APPLICATION: SOLVING EQUATIONS

The algorithm 'diagnose' described in Section 3.1 is general. Although it
was developed in order to solve the task of diagnosis it can be used with-
out change for other purposes also. Here we show how it can be used for
solving equations where it is not possible to find the exact analytical
solution. Among numerical methods for finding approximate solutions,
the method of bisection is well known. Its main virtue is its simplicity,
although there are other numerical methods that are more efficient. It is
interesting that our hierarchical diagnostic algorithm, when applied to
numerical solving of equations, emulates the method of bisection.
A function

Y = f(X)

can be viewed as a special kind of model. The input is the value of the
independent variable X. The model transforms it into the output, namely
into the value of the variable Y Obviously the notion of state can be
neglected here. Consider the equation

f(X) = y

To solve it means finding the input which gives the output value y. In this
sense solving equations is similar to the task of diagnosis.
Let us consider a continuous function Y = f(X) on a given interval

[el ,e2]. Let us have a partition P of [el ,e2] into subintervals which can
intersect only in divisional points and cover the whole interval [el ,e2].
The function can then be represented as a relation

model(X, Y)

which is true if X = XInt is one of the subintervals in the partition P of
[el , e2] and Y= [yl,y2] such that

yl =min f(X) and y2 = max f (X)
xEXInt xEXInt

There is an obvious correlation between the number of subintervals and
the degree of accuracy to which we can specify the value of y given X
(and vice ver,sa). The partition P is defined by two parameters K and N

276

MOZETIC, BRATKO, AND URBANCIC

and is obtained from the initial interval by N steps of K-section where K-
section is the division of an interval into K equal subintervals. Accord-
ingly, P consists of KN intervals.
Thus the model has two parameters X and Y whose values are

intervals. The 'model' relation has to be defined with regard to the
function/ As an example the function

Y = X+ tan(X)

on the interval [0,1] will be considered. The relation 'model' can be
defined, using interval arithmetic, in PROLOG as follows:

model(X, Y) :—
tan_int(X, TanX),
add_int(X, TanX, Y).

% tangent of an interval which does not contain any pole
% A .. B means interval [A,B]
tan_int(X 1 .. X 2, TanX 1 . . TanX 2) :—
TanX 1 is tan(X1),
TanX 2 is tan(X 2).

% addition of intervals
add_int(X1 .. X2, Yl .. Y2, Z1 .. Z2) :—
Zi is X1 + Yl,
X2 is X2 + Y2.

% type(model(InType, OutType)).
type(model(x, y)).

The definition is rather simple because the functions involved are
monotonic.
Of the three ways for refining the level of detail of a model mentioned

in Section 2.2, here we use only one: refining values of variables by defin-
ing hierarchies of values. Hierarchies for X are defined with a simple
rule: The interval [A ,I3] is in the hierarchy below the interval [X, Y] if
[A ,B] is one of the intervals obtained by the division of [X, Y] into K
equal intervals. For Ywe have a trivial hierarchy, as the domains are the
same at all levels.

Total completeness is ensured by construction. The initial interval (i.e.
the value of Xat the first level) is the only one without abstraction:

% no_abstract(Level, In).
no_abstract(1, 0.. 1).

The model on the i-th level differs from the model on the (i-1)-th level
only in the interval values of X. On the i-th step of K-section each of the
values of X on the (i-1)-th level is divided into K subintervals. In such a
way all the values on the i-th level are obtained.

277

LEVELS OF ABSTRACTION IN QUALITATIVE MODELLING

The task of finding a solution of an equation f(X) = y can now be
stated as follows; given a real number y find an interval XInt such that
the relation 'model(XInt, YInt)' is satisfied and y is in YInt.

% verify(Level, X, y).
verify(, In, Out) :—
model(In, Y),
is_in(Out, Y).

Now we can apply the 'diagnose' algorithm to our task of finding the

solution of an equation. As an example let us find the solution of the
equation

X + tan(X) = 1

on the interval [0, 1] (see Figure 6).

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2
0.0
00 0.2 0.4 0.6 0.8 1.0 X

Figure 6. Graph of the function Y= X + tan(X).

We have to specify the parameter K. For example, K =2 determines
that we will look for a solution with the method of bisection. Now we
only have to instantiate the values of Level and Out. In our case Out has
value 1. So the solution on the 10-th level is found by:

?- diagnose(10, 1, X).
X= 0.47851563 .. 0.48046875

At the 30-th level the solution accurate to eight decimal places is
obtained:

278

MOZETIC, BRATKO, AND URBANCIC

?- diagnose(30, 1, X)
X= 0.47973101 .. 0.47973101

Some interesting results are collected in Table 4.

Table 4. Levels and times needed for
finding X accurate to 8 decimal places
using bisection, 10-section, and
100-section (interpreted PROLOG on
IBM AT).

Level Time (seconds)

2 30 1.70
10 10 2.03
100 6 10.77

6. CONCLUSION

Often it is difficult or impossible to execute a model in the backward
direction. In this respect, representation at multiple levels of abstraction
and the use of hierarchical diagnosis seems promising. A representation
formalism with abstraction hierarchy based on logic was described,
together with the corresponding hierarchical diagnostic algorithm. This
can also be used for backward execution of a model or inverse
simulation.
The method was applied to a hierarchical model of the heart and ECG

diagnosis based on this model. Another exercise in using this algorithm
in equation-solving indicates the applicability of the method as a general
technique of logic programming.

Further research centred around the proposed representation is con-
cerned with automatic learning in the context of qualitative modelling,
aiming at machine-aided construction of qualitative models (Mozetic
1987a, b). The learning system developed has already been successfully
applied in interactive construction of a model of the heart, given the
structure of the model and some examples of its behaviour (Mozetic
1988).

REFERENCES

Bratko, I., Mozetic, I., and Lavrac, N. (1989). KARDIO—a study in deep and qualitative
knowledge for expert systems. MIT Press, Cambridge, MA.

de Kleer, J. and Brown, J. S. (1984). A qualitative physics based on confluences.
Artificial Intelligence 24, Nos 1-3, pp. 7-83.

279

LEVELS OF ABSTRACTION IN QUALITATIVE MODELLING

Forbus, K. D. (1984). Qualitative process theory. Artificial Intelligence 24, Nos 1-3,
p. 168.

Lavrac, N., Bratko, I., Mozetic, I., Cercek, B., Grad, A., and Horvat, M. (1985).
KARDIO-E—an expert system for electrocardiographic diagnosis of cardiac
arrhythmias. Expert Systems 2 No. 1.

Lloyd, J. W. (1984). Foundations of logic programming. Springer-Verlag.
Lloyd, J. W. and Topor, R. W. (1985). A basis for Deductive Database Systems. Journal
of Logic Programming 2 No. 2, pp. 93-109.

Michalski, R. S. and Winston, P. (1986). Variable Precision Logic. Artificial Intelligence
29, No. 2, pp. 121-46.

Mozetic, I. (1986). Knowledge extraction through learning from examples. In Machine
Learning: A Guide to Current Research (Eds T. M. Mitchell, J. G. Carbonell, and R. S.
Michalski), Kluwer Academic Publishers, Boston.

Mozetic, I. (1987a). Learning of qualitative models. In Progress in Machine Learning
(Eds I. Bratko and N. Lavrac), Sigma Press, Wilmslow, UK.
Mozetic, I. (1987b). The role of abstractions in learning qualitative models. In Proc. of
the Fourth International Workshop on Machine Learning, Morgan Kaufmann, Irvine,
CA, June 22-25.

Mozetic, I. (1988). Automatic construction of qualitative models. Ph.D. Thesis (in
Slovenian), E. Kardelj University, Ljubljana, Yugoslavia.

Mozetic, I. (1990). Diagnostic efficiency of deep and surface knowledge in KARDIO.
Artificial Intelligence in Medicine, 2, No. 2, 67-83.

Steels, L. (1985). Second generation expert systems. Future Generation Computer
Systems I, No. 4, pp. 213-21.

280

APPLICATIONS AND MODELS OF
KNOWLEDGE ACQUISITION

18

Information Content of Chess Positions:

Implications for Game-Specific Knowledge of

Chess Players

J. Nievergeltt
Department of Computer Science,
University of Illinois, USA

1. INTRODUCTION

Chess has served as a convenient vehicle for studying cognition and
perception (see de Groot 1965, and Chase and Simon 1973) as well as
machine intelligence. Perhaps the central question for both of these
research uses of chess is: How much chess-specific knowledge does it
take to play at a given level of competence, for example, at the master
level? It is difficult to say what chess-specific knowledge is, and it
certainly consists of different types of knowledge that must be
considered independently of each other (for example, 'book knowledge'
is very different from experience obtained in over-the-board play). Even
if one succeeds in defining what 'chess-specific knowledge' is, there
remains the difficulty of measuring it. Because of these difficulties, any
approach to measuring the amount of knowledge possessed by a
practitioner of a craft must be based on questionable assumptions, and
any result obtained is subject to uncertainty and criticism. Only the
inherent interest of the question posed justifies reporting on a rough and
inconclusive experiment designed to answer one aspect of the tantalizing
question: How much chess-specific knowledge does it take to play at a
given level of competence?

2. PSYCHOLOGICAL ASSUMPTIONS

The experiment to be reported involves determining chess positions that
occur in normal play (tournament games) by asking questions. The
conclusions drawn from this experiment rest on a number of psycho-
logical assumptions. These have been discussed in the literature, and are
briefly reviewed here.

i'Present address: Informatik, ETH, CH-8092 Zurich, Switzerland.

283

■••••

INFORMATION CONTENT OF CHESS POSITIONS

2.1. Assumption 1: Short-term and long-term memory, and chunks

People have a vast long-term memory. Reading from this memory is fast
(seconds), but writing into it is a slow process that takes at least minutes,
perhaps hours or days. Memorization requires repeated effort (writing
into memory). People also have a tiny short-term memory, with
instantaneous read/write access. The capacity of these two memories is
measured in 'chunks' (G. A. Miller 1956). Long-term memory has a
practically infinite capacity, but the capacity of short-term memory is
'the magic number 7 ± 2' chunks. A chunk is an ill-defined unit of storage
that gets moved between short- and long-term memory. To most mathe-
maticians, the number 3.14159 is one chunk, something that they recall
and recognize at a glance. In a sequence of random digits, on the other
hand, each digit recalled is a separate chunk.

2.2. Assumption 2: Recognition of chess positions by means of patterns

De Groot [1965] reports on experiments where subjects having different
levels of chess skill were shown chess positions for a few seconds, then
were asked to reconstruct the position seen. His main result can be
summarized as follows. On realistic chess positions, taken from actual
games, experienced players performed significantly better than novices.
On random, but legal, chess positions, novices recalled positions as well
as experienced players. The explanation for this phenomenon is the
following. A player builds up a library of chess 'patterns' (configurations
of pieces) that he sees frequently on the board, and stores it in his long-
term memory. When presented with a new position, he codes it in terms
of a few appropriate patterns from his library. If he is able to recall a
position after seeing it for less than a minute, this means that he has
stored the position entirely in his short-term memory; there was no time
to memorize it in long-term memory. According to Assumption 1, he
must have coded the position in no more than about seven chunks, or
patterns. If a player can recall any realistic chess position after a short
exposure, this means that his library of patterns is sufficiently large so
that some combination of about seven patterns exists to match any
position.

2.3. Assumption 3: No extraneous patterns

A player will not store in his long-term memory any patterns that are
useless to him, that he has not seen before, and that do not occur in
realistic positions.

3. THE NUMBER OF PATTERNS STORED IN LONG-TERM MEMORY
AS A MEASURE OF CHESS-SPECIFIC KNOWLEDGE

De Groot's experiments suggest that one reasonable measure of a

284

NIEVERGELT

persons's chess knowledge is the number of patterns he has committed
to long-term memory for encoding chess positions, since this number
appears to grow with the competence of the player. We are now •
interested in the maximum number of patterns that any player may have
stored in long-term memory. We maintain that a player has achieved this
maximum number if he can recall any realistic chess position after an
exposure shorter than what would be needed to commit this position to
long-term memory. Experience indicates that this ability is reached by
players of intermediate strength—perhaps at the level of experts; in other
words, that the number of patterns stored may increase rapidly at the
lower levels of chess competence, but then reaches a saturation point.
The experiments reported here were all performed with subjects who
have the ability to look at an arbitrary realistic chess position for less
than a minute, then recall it to perfection. According to our assumptions
1 and 2, this means that they have the maximal number of patterns.
According to assumption 3, these subjects have exactly the number of
patterns required to code any realistic chess position as a configuration
of at most s patterns, where s is the number of chunks they can hold in
short-term memory.

4. THE ENTROPY OF THE SPACE OF CHESS POSITIONS,
AND HOW TO MEASURE IT

In the preceding paragraph, the number of patterns committed to long-
term memory was related in a vague way to the number of 'realistic' chess
patterns, i.e. those that have occurred, or might occur, in actual games.
Since the vast majority of these 'realistic' positions have never occurred
over the board (there are too many of them), and since positions that
look 'unrealistic' do occur once in a while in actual play, there is a
problem of how to count the number of realistic positions.
The well-known concept of entropy from statistical communication

theory provides the needed measure. We say that any legal chess position
might occur in actual play, but there is a probability of occurrence
attached to each position. This probability is higher for realistic posi-
tions than it is for randomly constructed legal positions. Let E = (e1,. ,
e„) be the set of all legal chess positions, and let p, be the probability of
occurrence of position er The entropy H(E) of the space E, measured in
bits, is as defined

11(191, • • P)= p, log p,

where log is the logarithm to the base 2. Owing to the fact that the

285

INFORMATION CONTENT OF CHESS POSITIONS

positions that have actually occurred form such a vanishingly small
sample from the space E of all positions, and that the majority of the
positions that have occurred at all, have occurred only once, the
probabilities p, cannot be determined experimentally. The entropy
H(E), on the other hand, can be determined with reasonable accuracy by
a version of the ̀twenty-questions-game', as follows. A position that has
occurred in actual play is chosen at random; a 'guesser' who does not
know this position is asked to determine it by asking multiple-choice
questions (including binary true/false questions). These are answered by
an informant who does know the position. The validity of this questions-
game for determining the entropy of a sample space is due to the 'Noise-
less Coding Theorem' of communication theory. In a loose terminology
which is sufficient for our purpose it states:

'Given a sample space E with entropy H(E), and given that by sampling
from E, a particular event ei has occurred; on average, over many
samples:

(1) it is impossible to determine which event ei has occurred in less
than H binary (Yes-No) questions

(2) it is possible to come as close as desired to H binary questions
by asking the right questions'.

Asking the right questions, and getting correct answers to them, of
course requires that the guesser and the informant bring their chess
knowledge into play. Thus the approximate value of the entropy
obtained by the questions-game will depend to some extent on the chess
competence of the guesser and the informant. Since the mere recognition
of positions is a rather low-level chess skill, it is plausible to assume that
chess players who have reached a certain level of competence (for
example, are able to play blindfold chess), have the required skill and
terminology to ask and to answer 'the right questions'.

5. QUANTITATIVE RELATION BETWEEN THE NUMBER OF
PATTERNS STORED IN LONG-TERM MEMORY, AND THE
ENTROPY OF THE SPACE OF POSITIONS

Let c be the number of patterns a player has stored as chunks in his long-
term memory. Let s be the number of chunks he can hold in his short-
term memory. Then a player can code about 'c choose s', i.e.

(C\ c! Cs

s s!(c— s)! s!

different positions. Under the various assumptions stated earlier, this

286

NIEVERGELT

number is approximately equal to 2", the number of realistic chess posi-
tions. This leads to the approximation.

(s!211) I is

For reasonable values of s, i.e., the magic number 7 ± 2, and for various
values of the entropy H, c assumes the approximate values shown below:

s\H 50 60 70 80 90 100

6 750 3000 7500 30000 95000 300000
7 500 1500 3400 10000 27000 70000
8 250 1000 1800 3800 8000 24000

Unfortunately, the function c(s,H) is very sensitive to both of its
parameters, and thus a determination of the value of c by this method is
inherently unreliable.

6. THE GUESSING GAME

When faced with an unknown position, the guesser is allowed any
question that is pertinent to chess positions, and has a multiple-choice
answer. (Binary yes/no answers are a special case of multiple choice.)
Questions are not allowed that pertain to the game in which this position
arose. Questions need not have an objective answer; the answer may
depend on the subjective judgement of the informant. A few examples
will make these conditions clear.

Not allowed: 'If White has an advantage, describe wherein this
advantage consists' because it is not a multiple-choice
question.

On the other hand if the guesser has already determined that White
has an advantage, the following is

Allowed: 'Is White's advantage primarily due to (a) material superi-
ority, or (b) positional superiority'. Notice how the
informant's chess judgement enters into his answer.

Not allowed: Did White castle in this game?'

Allowed: 'Judging from the current position, would you say that (a)
White has castled, (b) White has not castled, (c) you can't
tell?'

Not allowed: Did White win this game?'

Allowed: Would you say White has a won position, Yes or No?'

Allowed: Is it an opening, middle game, or endgame position?'

287

INFORMATION CONTENT OF CHESS POSITIONS

Even if the informant has difficulty classifying the given position as
opening or middle game, he has to make up his mind, and is not allowed
to answer the last question by saying 'It could be called either an opening
or a middle game position'. The latter, however, would be a fair answer
to the five-way question 'Opening, between opening and middle game,
middle game, between middle game and endgame, or endgame?
A question with k possible answers is counted as giving log k bits of

information. For example, the question 'Tell me where the White King is'
is allowed, and charged with log 64 = 6 bits. Most questions actually
asked have only a few choices. For your convenience if you wish to play
the guessing game, here is the amount of information provided by a k-
choice question for small values of k:

2 3 4 5 6 7 8
log k 1 1.58 2 2.32 2.58 2.81 3

7. THE EXPERIMENT

Our experiment to determine the entropy of the space of chess positions
is still continuing. Positions are selected randomly from master-level
tournament games. Guessers and informants are experts or masters.
Guessing one position takes between half an hour and one hour. So far
each of 10 positions has been guessed by two people. The average
number of bits required to guess a position was about 70. The range was
50 to 80 bits, with the exception of one very wild position, which
required 91 bits for one guesser, and 100 bits by another. Opening
positions require fewer bits than middle game positions or endgame
positions. The latter two types require about the same number of bits,
which can be explained as follows: while an endgame position has fewer
pieces, these can be in many more different places than they can in a
middle game. For example, a King in an endgame can be anywhere on the
board, while it is almost always restricted to a few squares in the middle
game.
For comparison's sake: 136 bits suffice to determine any legal chess

position (of which there are about 10"). Simon and Gilmartin (1973)
have estimated that a chess master may have stored 30,000 chunks of
chess-specific knowledget. Our experiments do not contradict this, but
they are too weak to confirm it.

Acknowledgements

I am grateful to Donald Michie for his continuing stimulation of my interests in computer
chess and the cognitive aspects of chess, and for his help with the preparation of this note.
This paper is reprinted from SIGART Newsletter, 62, 13-15, 1977, by kind permission of
author and publisher.

tChinese has about 50,000 ideograms. D.M.

288

NIEVERGELT

REFERENCES

Chase, W. G. and Simon, H. A. (1973). Perception in chess. Cognitive Psychology4, pp.
55-81.

Groot, A. de (1965). Thought and choice in chess, (ed. G. W. Baylor). The Hague and
Paris: Mouton. (Translation, with additions, of Dutch version of 1946.)

Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our
capacity for processing information. Psycho!. Rev. 63, pp. 81-97.

Simon, H. A. and Gilmartin, K. (1973). Cognitive Psychology 5, pp. 29-46.

289

19

PROMIS: Experiments in Machine
Learning and Protein Folding

R. D. King t
The Turing Institute
Glasgow, UK

Abstract

The aim of these experiments is to test the use of machine learning as a
tool for forming theories from data. A machine-learning program
(PRorms) was developed to form rules for predicting protein secondary
structure from primary structure—an important unsolved problem in
molecular biology. PROMIS uses a top-down controlled hill-climbing
beam search with the rules for predicting secondary structure being
search states. Structured background knowledge is used to transform the
search space and control generalization. Six rules were found that are
humanly comprehensible and provide a chemically meaningful descrip-
tion of the important factors in formation of secondary structure. These
rules predicted protein secondary structure with a Q3 accuracy of 57 per
cent, which is comparable with the most commonly used prediction
methods. Variations of the rules were found with different accuracies.
These were found to help highlight the important features of the rule.
Rules were also found which used threshold logic to match sequences of
primary structure. These rules were found to be suitable for predicting
turn secondary structure. PROMIS is an example of the application of
machine learning to molecular biological databases where there is an
increasing demand for some form of automated discovery.

1. INTRODUCTION

Perhaps the most promising and yet most difficult application of machine
learning is in the area of scientific discovery: 'the most technically grip-
ping challenge, ... will be how to spread the computer wave from the
front end of the scientific process, the telescopes, microscopes, ... spark
chambers, and the like, back to recognition and reasoning processes by
which the chaos of data is finally consolidated into orderly discovery'
(Michie 1982). For scientific discovery, machine learning is viewed as a
tool to aid working scientists in forming theories from data. Such tools

Wresent address: Brainware, Gustav-Meyer-Alice 25, 1000 Berlin 65, FRG

291

PROMIS

are needed because it often proves difficult for a scientist to perceive
patterns in data, even though strong patterns exist. Difficulty in perceiv-
ing patterns may occur for a number of reasons: for example patterns
may be obscured because there is a very large amount of data, or because
the data may be in a difficult form. This paper describes PROMIS (protein
machine induction system), a program designed to aid in the formation
and creation of theories about the formation of protein secondary
structure from primary structure (King 1987).

1.1. The problem

Proteins are the most complicated chemicals that exist. They are respon-
sible for almost all the important tasks within living systems. In a human
it is estimated that there are around 100,000 different types of protein.
Typical types of proteins are: enzymes (e.g. DNA polymerase), transport
proteins (e.g. haemoglobin), protection proteins (e.g. HIV antibody), and
toxins (e.g. cobra venom). The conformation of a protein, its three-
dimensional shape, determines its function. Anfinsen et al. (1961), in an
elegant series of experiments, showed that for a given environment, the
conformation of a protein is uniquely coded for in the one-dimensional
structure of a gene. It is now possible in molecular biology to create a
gene and to have this gene translated into the three-dimensional shape of
a protein: yet it is not possible to create new useful proteins by doing this,
as the rules governing the conversion of the one-dimensional infor-
mation into three-dimensional information and the rules relating confor-
mation to function are not understood. PROMIS is concerned with finding
rules relating one-dimensional and three-dimensional information—`the
protein folding problem'.
A gene forms the conformation of a protein in the following way: the

DNA sequence is first translated by use of the genetic code into a
sequence of amino acids which is the primary structure of a protein (via a
matching RNA sequence), the one-dimensional primary structure then
spontaneously folds itself into the final conformation of the protein.
Between the primary structure and the conformation there is a level of
structure known as the secondary structure (Schulz and Schirmer 1978).
In finding rules relating the primary structure and the conformation, it is
simplest to split the problem into rules relating primary to secondary
structure and rules relating secondary structure to conformation (Cohen
et al. 1982; Lathrop et al. 1987). PROMIS is designed to discover rules
that convert primary structure into secondary structure. The difficulty of
predicting secondary structure comes from the fact that it is the
sequence of primary structure as a whole which determines the second-
ary structure of any particular position, and so any individual amino
acids's contribution cannot be said to be context free. In PROMIS, this

292

KING

Godian knot is cut by considering long-range interactions to be 'noise'
and local regions of secondary structure to be caused by the correspond-
ing local region of primary structure, an assumption of locality.

It is thought probable that much of the knowledge necessary for pre-
dicting protein secondary structure already implicitly exists in data
bases, hidden by the bulk and difficult nature of the information. There
are around 70 proteins of known primary and secondary structure,
which together give around 10,000 positions of primary structure where
the corresponding secondary is known. The secondary structure infor-
mation has been acquired by protein crystallography and is very difficult
to obtain. The primary structure information is much more easily
obtained by genetic sequencing methods. In recent years there has been
an explosive growth in genetic sequence information and there are now
around 10,000,000 primary structure positions known (Smith 1987).
The great imbalance of information is set to get even worse with the
prospective sequencing of the human genome (Roberts 1987). A
solution to the protein folding problem would allow us to exploit this
increase in information fully by removing the bottleneck of crystal-
lography.

1.2. The suitability of the problem

The problem of predicting a protein's secondary structure from its
primary structure is increasingly becoming a test bed for applications of
machine learning. There are several reasons for this:

1. It is of the highest scientific importance.

2. It is of potentially great practical importance.

3. It is a well-known hard and intractable subject and as such presents a
great challenge to machine learning technology.

4. Human and statistical methods have fared poorly in attempting to
find regularities in the data and solve the problem.

5. There exists a large and growing amount of symbolic data of
relevance to the problem (consisting of example proteins of known
primary and secondary structure).

6. There exists relevant background knowledge in a form that can
readily be applied in a machine-learning program.

7. The data is available in a machine-readable form.

8. There is a reasonably well accepted measure of success, allowing
comparison between different machine learning techniques and also
more conventional methods.

293

PROMIS

13. Previous work

There have been three tyPes of traditional approach to the problem of
secondary structure prediction: methods based on statistics, methods
based on chemical theory, and most recently methods based on
homology (exemplars), (Sternberg 1983). The most successful achieve
an accuracy of around 60 per cent. Statistical methods examine the data
base of known primary and secondary structures to find statistical
trends, little domain knowledge is used and the rules produced are not in
a form comprehensible by people or related to chemical theory, e.g.
Gibrat et al. (1987). Chemical theory methods use knowledge of
molecular structure to produce prediction rules. These rules are com-
prehensible but mainly ignore the empirical evidence of the data base of
known protein structures, e.g. Lim (1974a, b) and Cohen et al. (1983).
The homology-based methods use domain knowledge to match
unknown sequences with known sequences to make their predictions.
These predictions suffer by having no explanation in chemical theory
and by not producing any new knowledge; the methods closely resemble
exemplar-based learning algorithms, e.g. Levin etal. (1986).
Apart from PROMIS, two other machine learning approaches have been

applied to protein secondary structure prediction. Qian and Sejnowski
(1988) made an extensive study of the application of neural networks to
the problem. This work achieved an impressive accuracy of prediction
and raised several important points about protein secondary structure
prediction, but it had the disadvantages of involving a large number of
numerical parameters and treating protein folding as a black box with no
explanation in human comprehensible terms (a Hinton diagram means
nothing to a molecular biologist). Seshu etal. (1988) applied the learning
program PLS I to the problem (this program is similar to 1o3). PLS 1 failed
to achieve results significantly better than the default accuracy. They
also applied their program NTC (New Term Constructor) to the problem.
NTC consists of a complex suite of programs designed to carry out con-
structive induction in 'hard' domains (Rendell 1988). NTC achieved
reasonable results but did not produce concepts comprehensible to
molecular biologists.

2. METHODS

The learning problem is: given the proteins of known primary and
secondary structure, find generalized relationships between the existing
primary and secondary structure which can be used to predict an
unknown secondary structure from a known primary structure.
Inductive learning is taken to be a heuristic search for a goal through a
space of symbolic descriptions generated by application of various rules
of inference to the initial observational statements (Mitchell 1982). The

294

KING

search method used was designed specifically for induction of strings in
the presence of noise over a large search space.

2.1. Inputs

The primary and secondary structure of a protein can be considered to
be two related strings of characters, where there is a one-to-one mapping
between the primary structure and the secondary structure.

[p 1 , p2, p3, p4, p5, . . . , pn] primary structure [] brackets indicate a
sequence.
[sl, s2, s3, s4, s5, . . . , sn] secondary structure

In the alphabet of life there are 20 letters in the primary structure and
three letters in the secondary structure. The primary letters are rep-
resented as follows (p, g, c, a, s, n, v, t, d, i, 1, m, f, y, w, h, k, e, r, q); these
are the 20 genetically coded amino acid residues; 0 brackets indicate a
set. The secondary lettes are (A, B, T). These are the three types of
secondary structure, alpha-helix, beta-sheet, and turns, respectively.

2.2. Outputs

The concepts induced by the learning program should be good descrip-
tions of the data and useful in prediction. The concepts should also be
comprehensible to the domain scientists using the program, that is, they
should fit in with current scientific ideas about the domain and perhaps
even the scientist's own biases. The concepts should also be simple
enough to be represented in a machine learning program.
The output of PROMIS is rules that predict secondary structure from

primary structure. The general form of the rules is:

if the string of classes [CC, Dc, Ec] occurs
(i.e. a string of residues occurs [w, x, y]
where the residue w belongs to the class Cc
where the residue x belongs to the class Dc
where the residue y belongs to the class Ec)

then the residues are all in the secondary stucture type S.

For example, using the rule [positive, negative, positive] A

with the positive class = (h, k, r)
with the negative class = (d, e)

then the primary sequence

[h, d, r] is predicted to have
[A, A, A,] as a corresponding secondary structure by use of the rule.

These rules are similar in form to that used by domain experts in encod-
ing knowledge about proteins.

295

PROMIS

Learning is carried out in a representation that is different from the
input data: that is, not at the residue level (Barr and Feigenbaum 1983,
Dietterich and Michalski 1983). Background knowledge is used to
group the residues into classes sharing a particular chemical property, or
conjunction or disjunction of several properties. For example the
residues (r, k, h) form the class of 'positive' residues and the residues (d,
e) form the class of 'negative' residues. There is also the class 'charged'
which consists of the residues (r, k, h, d, e) and is the conjunction of the
classes 'positive' and. 'negative'. The reason for grouping residues into
classes is to be able to produce rules that can specify more than one
primary sequence (that is, they are more general). There are 71 classes
used and each residue is a member of 30 classes on average, which
means that for a primary sequence of length n there are around 30"
possible class sequences. The classifications used in this work are those
of Taylor (1986).

2.3. Background knowledge used as search operators

The class representation of the residues is equivalent to a generalization
hierarchy. The graph is a directed acyclic graph and not a tree because
any particular node, with the exception of the root node and its children,
can have more than one parent; this is because a particular class can be a
subclass of several different complex classes; it is a tangled hierarchy.
The root node in this example is the class of all residues ('all').
Generalization structures are described by Michalski and Stepp (1983).
The transformation of the set representation into a generalization

lattice immediately suggests the method of induction known as climbing
a generalization tree (Michalski 1983). This is based on the fact that the
ancestor nodes of a set consist of inductive generalizations of that set.
Thus, to carry out induction a rule containing a set can be generalized to
a rule containing a set that is an ancestor of the original set.
This can be more formally represented thus:

if the rule exists [Bs] A,

where Bs and Cs are sets, Cs is an ancestor of Bs and A is a secondary
conformation type, then the following inductive inference can be made:

[Cs] A.

A possible example of this is:

from [positive] — A, infer the generalization [charged] -.A.

Because of the nature of the complex classes some of the climbing tree
inductions can be represented as dropping conditions or adding
alternatives. An example of dropping a condition is the generalization of
[large_and_polar] to [large]. In this example the condition of polarity

296

KING

has been dropped as the set [large] is an ancestor of [large_and_polar].
An example of adding an alternative is the generalization of [small] to
[small_or_polar]. In this example the alternative of polarity has been
added as the set [small_or_polar] is an ancestor of [small].

Specialization can easily be carried out with the use of the generaliz-
ation tree by simply reversing specialization and moving down the tree.
A possible example of this is:

from [charged] A, infer the generalization [positive] -* A.

A method of increasing the length of the string is also needed. This can
be achieved by adding a new class to either end of the string of classes, a
form of specialization specific to string induction. A possible example of
this is:

[positive] A, becomes [positive, negative] A

The operators used in PROMIS were restricted to: lengthening one end
of a rule at a time by adding a new class to the rule's condition and using
the generalization tree operators to generalize and specialize on one
class of the rule's condition at any one time.

2.4. Rule evaluation

• The goal of the search is to find general powerful rules for converting
primary structure into secondary structure. To do this a rule evaluation
function and a method of assessing statistical significance are needed.
The existence of a very large amount of noise in the data (associated with
the restrictions inherent in our data representation) means that the best
rules should not be expected to be necessarily 100 per cent accurate. It is
also expected that no single rule will have 100 per cent coverage.
To find the evaluation of a rule, the sections of primary and secondary

sequence are collected where the rule applies in the data base. The
sequences of actual secondary structure are then compared with the
predicted secondary structure to count how many positions were
correctly predicted and how many positions were incorrectly predicted.
The evaluation function used is:

(P — N)/(P + N + M);

where P = the number of correctly predicted positions, N = the number
of incorrectly predicted positions and M = the number of positions not
predicted. For example: if the primary sequence

[f g, h, h, g, h]

is found to have the following secondary structure in the data base

[A, A, A, B, B, B]

297

PRO MIS

and it is predicted to have the following secondary structure by a rule

[A, A, A, A, X, X] (X= no prediction made)

then the number of correctly predicted positions is three, the number of
incorrectly predicted positions is one, the number of positions not
predicted is two and the evaluation of the rule is 0.333. The justification
of this evaluation function is that it increases with correct predictions,
decreases with incorrect predictions, and is normalized for a given
example set; a similar evaluation functions is used in NEWGEM (Mozetic
1986).

It is important that any relationship between primary and secondary
structure that is found in the data base should be statistically significant.
This is because the rule is to be used to predict unknown secondary
structure in the future, and thus must represent a real relationship, not
just one that arises through the chance existence of particular primary
and secondary structures within the data base. As a heuristic for finding
significant rules, a threshold test is used in PROMIS. This involves intro-
ducing a threshold number of positions which a rule must cover before it
is considered to be significant. For example, if the threshold is set at 100,
then the number of correctly predicted and incorrectly predicted
positions must be > 100. A similar method is used in RULEGEN from
Meta-DENDRAL (Buchanan and Feigenbaum 1981), in SEQUOIA (Haiech
et al. 1986—SEQUOIA also includes a threshold for incorrect coverage)
and in the work of Rooman and Wodak (1988).

2.5. Control of search

Complete search of the rule space is not possible. It is therefore necess-
ary to use some form of heuristic search. The method adopted uses top-
down 'generate and test' control, because additional heuristics can be
easily applied and because it has good noise immunity (Mitchell 1982).
This method has the disadvantage that it involves many passes through
the data.
This algorithm (see below) is a form of hill-climbing beam search. It

was chosen as it avoids the large memory, requirements of best-first
search while still avoiding premature commitment to a particular branch
of the search tree, see Bisiani (1987). Beam search is used in many
induction programs, as, for example, AQ15(Michalski etal. 1986) and CN2
(Clark and Niblett 1987).

Algorithm
begin
add an initial beam set of rules
repeat
new rules are generated from the beam set by use of the operators,

298

KING

the new rules are evaluated,
store any rule from the beam set that does not produce a better rule,
the beam set becomes the best evaluated new rules,

until
the beam set is empty or a set number of iterations have passed

without a rule entering the store with the highest known
evaluation,

the best rule found is that with the highest evaluation in the store.
end

The examples of the best rule may then be covered and the process
repeated.
In the search PROMIS faces the difficult problem of knowing when to

stop and accept a local maximum as the best that can be found, given the
limited resources of time and space allowed for the search. Many, if not
most practical search problems suffer from lack of a simple test to tell
when the goal state has been found. This limits the value of the
traditional search formalism and algorithms that exploit it. The method
of allowing several iterations to occur between finding the best rule and
stopping, is a compromise between best-first and hill-climbing search
and allows some local maxima to be avoided.

3. RESULTS

3.1. Data

The example set of proteins used came from the standard Brookhaven
data base, via the molecular biology laboratory of Birkbeck College in
the University of London. The secondary structure is objectively
designated using a modified algorithm from Kabsch and Sander (1983a),
which assigns secondary structure on the basis of a known tertiary struc-
ture. The proteins used were selected from the data base by M Stern-
berg, an expert in the subject of protein structure. The Brookhaven data
base contains — 100 proteins. This was trimmed down to 61 proteins by
removing polypeptides and homologous proteins. In addition, only one
polypeptide chain was selected from any protein; this was done to make
the data as unbiased as possible. The test and training set were split ran-
domly to give a 7:3 division. There are 8024 positions in the training set;
2161 are alpha-helices, 1466 are beta-sheets, and 4397 are turns. There
are 3283 positions in the test set, 917 are alpha-helices, 668 are beta
sheets and 1698 are turns.

3.2. Experiment 1

PROMIS was used to find general rules for predicting secondary structure
from primary structure and six rules were found (King 1988) (see Table
1). All the rules were found starting with the rule,

299

Ta
bl
e
1.

 I
nd

iv
id

ua
l
ev
al
ua
ti
on
 o
f
ru

le
s
fo

un
d.

 Ru
le

s
la

, 2
a
 a
n
d
 3
a
 a
re

 f
or
 p
re
di
ct
in
g
al
ph
a-
he

li
ce

s,
 ru

le
s
l
b
 a
nd
 2
b

ar
e
fo

r
pr
ed
ic
ti
ng
 b
et

a-
sh

ee
ts

, r
ul

e
it

 is
 f
or

 p
re
di
ct
in
g
tu
rn
s.
 'E
va
lu
at
io
n'
 is

 t
he
 e
va
lu
at
io
n
fu
nc
ti
on
 d
es

cr
ib

ed
 a
bo

ve
in
 s
ec

ti
on

 2
 M
et
ho
ds
. '
%
 c
ov

er
ed

' i
s
th

e
a
m
o
u
n
t
 o
f
se
co
nd
ar
y
st

ru
ct

ur
e
of
 t
he
 t
yp

e
pr

ed
ic

te
d
co

ve
re

d.
 "Y
o
co
rr
ec
t'
 is

th
e
ac
cu
ra
cy
 o
f
th

e
pr
ed
ic
ti
on
 f
or
 t
he
 p
os

it
io

ns
 c
ov

er
ed

. "
Yo

 c
or

re
ct

 b
as
ed
 o
n
 f
re

qu
en

cy
 o
f
se
co
nd
ar
y
st

ru
ct

ur
e'

 gi
ve
s

th
e
fr

eq
ue

nc
y
of
 t
he

 p
re

di
ct

ed
 t
yp

e
of

 s
ec
on
da
ry
 s
tr

uc
tu

re
 i
n
th

e
te
st
 s
et
. T
h
e
 d
ec
re
as
e
in
 c
ov

er
ag

e
a
n
d
 a
cc
ur
ac
y

f
r
o
m
 t
he

 t
ra

in
in

g
se
t
to

 t
he

 t
es
t
se

t
pr
ob
ab
ly
 r
ep
re
se
nt
s
s
o
m
e
 o
ve
rf
it
ti
ng
 o
f
th

e
ru

le
s
o
n
 t
he

 t
ra

in
in

g
se
t.

O
n
 t
ra
in
in
g
da
ta

O
n
 t
es
t
da

ta

0/0
0/0

0/0

Ru
le

Ev
al

ua
ti

on
co

ve
re

d
co

rr
ec

t
Ev
al
ua
ti
on

co
ve
re
d

co
rr
ec
t

la
0
.
0
3
3
9

1
7

7
9

0
.
0
0
7
9

1
3

5
6

2
a

0
.
0
1
4
7

1
2

6
4

—
0
.
0
0
0
6

8
4
9

3
a

0
.
0
2
4
2

1
2

7
8

0
.
0
1
5
5

7
8
3

l
b

0
.
0
0
6
7

1
6

5
7

0
.
0
0
4
9

1
7

5
4

2
b

0
.
0
0
1
4

1
0

5
2

—
0
.
0
0
0
6

3
4
8

It
0
.
1
6
3
9

7
8

6
2

0
.
1
1
6
7

8
1

5
8

%
 co

rr
ec
t
ba

se
d

o
n
 f
re

qu
en

cy
 o
f

se
co
nd
ar
y

st
ru

ct
ur

e

2
8
2
8
2
8
2
0

2
0
5
2

KING

[all] required secondary structure;

where 'all' matches every type of primary structure and the required
secondary structure is either alpha-helix, beta-sheet, or turn.
The beam size was 10, made up as follows: first the highest-scoring

rule according to the evaluation function; then three rules selected to be
different in at least two places from this rule; finally the next highest-
scoring six rules, making 10 in all.
These rules were found to perform comparably with the best

published claims for rules produced by domain experts. Exact com-
parison is difficult because of the imprecise reports of the hand-
produced rules, see, for example Cohen etal. (1983).

All the rules found show agreement with accepted knowledge about
the chemistry and structure of proteins. Yet the only knowledge about

• proteins that was coded into PROMIS was about residue classes. The
higher-level features found in the rules such as the amphilicity in alpha-
helix rules and hydrophobic cores in beta-sheet rules were found empiri-
cally by PROMIS. As little chemical knowledge was built into PROM'S,
discovery of these concepts gives credence to the rules. The lack of

• knowledge also allows PROMIS not to be bound to existing theory and lets
it form new and potentially useful concepts about proteins. Some such
concepts have been found and are being further investigated in collabor-
ation with domain experts.
The typical form of the rules is illustrated by the first rule to be found

for predicting alpha-helix secondary structure (rule la) (see Figure 1
and Table 2).

external

small_and_not_p_or_polar
11

small_and_not_p_or_polar 7 4 charged_and_not_h

small_or_polar 3

8 hydrophobictiny_or_polar 10

all_minus_p 6 Vilir1111

1 all_minus_k_p

5 aliphatic_orlarge_and_non_polar

small_or_polar 2 9 aromatic_or_very_hydrophobic •

internal

Figure 1. Helical wheel plan of rule I a. This shows the actual position of the classes in
an alpha helix.

301

PROMIS

Table 2. The occurrences of rule la in the test set. The 'protein id' is
the short standard identification name of the protein; ̀pos' is the
sequence position of the first amino-acid residue covered by the rule;
'secondary structure' is the sequence of secondary structure occurring
(the rule predicts the sequence to be all 'a' alpha-helix type), 'primary
structure' is the sequence of secondary structure from which the rule
predicts the primary structure.

protein
id pos secondary structure primary_structure

lABP 19 [aaaaaaaaaaa] [t ewkf adkagk]
1SBT 38 [t tttttttbbb] [s hpd 1 kvagga]
1TIM 1 [t t t t tbbbbbt] [aprkf f vggnw]
1TIM 50 [aaaat t t tbbb] [arqk 1 dakigv]
1TIM 54 [t t t tbbbbbbt] [1 dak i gvaaqn]
1TIM 108 [aaaaaaaaaat] [i gqkvaha 1 ae]
1TIM 179 [aaaaaaaaaaa] [qaqevhek 1 rg]
1TIM 183 [aaaaaaaaaaa] [vhek 1 r gw 1 kt]
1TIM 201 [aatbbbbt t tt] [vqsr i iyggsv]
1TIM 235 [t t taaaaaatt] [1 kpefvdi ina]
2ADK 24[aaaaaaaat tt] [qcekivqkygy]
2ADK 101 [aaaaaaaat tt] Eqgeef erkigq]
2ADK 146 [aaaaaaaaaaa] [ikkr 1 et yyka]
2CNA` 57 [t t tbbbbbbbt] [vdkr 1 savvsy]
2MDH 299 [aaaaaaaaaaa] [srekmnet ake]
351C 26 [aaaaaaaaaat] [aykdvaakfag]
3DFR 34 [t t t t bbbbbaa] [t vgk imvvgrr]
3DFR 75 [bb t t aaaaaaa] [v vhdv a a vf ay]
4FXN 11 [a a a aaa aa a aa] [n t ekmae 1 i ak]
8PAP 153 [t tttt tbbbbb] [cgnkvdhavaa]

[all_minus_k_p, small_or_polar, small_or_polar,
charge_and _not_h, aliphatic_orlarge_and_non_polar,
all_minus_p, small_and_not_p_or_polar, hydrophobic,
aromatic_or_very_hydrophobic, tiny_or_polar,
small_and_not_p_or_polar] — Alpha-helix

In Figure 1 the most important thing to note is the amphiphilic nature
of the rule, that is, the hydrophilic and hydrophobic residues are
positioned on separate sides of the helix, corresponding to the faces of
the helix which face externally (hydrophobic) and internally (hydro-
philic); this separation is thought to be a major explanation for helix
formation. The hydrophobic residues are arranged in the classic
sequence n(5), n + 3 (8), n + 4 (9); the same is true for the hydrophilic

302

KING

residues n(7), n+3 (10), n + 4 (11) and n — 4 (3), n — 3 (4), n(7),
(Schiffer and Edmundson 1967).
The six prediction rules found are put together to produce a complete

method for predicting protein secondary structure from primary
structure. This method takes as an input a sequence of primary structure
and produces as an output the corresponding secondary structure. Such
a prediction method is directly comparable with any other secondary
structure prediction method. The six rules combined to produce a Q3
value of 63 per cent in the training data and 57 per cent in the test data.
This accuracy is comparable with the most commonly used prediction
methods such as that of Chou-Fasman, Robson, and Lim (Kabsch and
Sander 1983b). When combined with protein domain-type specific rules
obtained in the same machine learning study (King 1988), they
produced a Q3 value of 67 per cent for secondary structure prediction in
the training data, and 60 per cent in the test set. This accuracy is
comparable with the best available other methods for protein prediction.

3.3. Experiment 2 (variations on a theme)

In experiments with an alternative rule evaluation method, a threshold
percentage accuracy Ta is set. If a rule meets this accuracy the number of
positive examples is then maximized while still maintaining the heuristic
for rule significance. The starting place of the search in these
experiments has been the rules generated in Experiment 1.
The aim of these experiments is to find variations of successful rules

which have different accuracies. This, it is hoped will highlight the
important constant features of a rule across the range of accuracies. For
example: if a successful rule is found with an accuracy of 65 per cent,
then variations of the rule might be sought with an accuracy of > 80 per
cent; the resulting rule is likely to have fewer examples, but it will show
what features are important in making the rule more accurate; con-
versely if a lower accuracy is set then the most general features of the rule
will tend to show through and possibly make the rule more comprehen-
sible to a domain expert.
The results of searching for rules of varied accuracy are illustrated by

the case of rule la, the first rule found for predicting alpha helices
(Figure 2). The highest accuracy rule was found by the specialization of
only three classes. The rule selected for with an accuracy of > 80 per
cent was found by extending the length of the rule (a form of specializa-
tion). The class added was 'hydrophobic_or_small' which fits in with the
amphiphilicity of the rule. Lower accuracy rules were found by
generalizing the hydrophobic classes and extending the rule with the
class 'all'. Interestingly the position of the new classes 'all' is such that
they lie between the external and internal faces of the helix. There is an

303

PROM IS

Selection Highest >80% Best >70% >60% >50% >40%

Coverage 10% 16% 17% 22% 26% 33% 69%

1 . all_minus_k_p all4-- 4— —). —3. --).

2 4--
small_or_polar_
and_not_
aromatic

small_or_polar all—3- —3- —3-

3 small_or_polar --). —3- --).4— .4-- --*

4 charged_and_
not_h

charged all_minus_p.4—. 4--- —0.

5

aliphatic_or_
large_and_non
polar

.............

aromatic_or_
very_
hydrophobic

hydrophobic
aromatic_or_
very_
hydrophobic

.4— 4E--

6 all_minus_p4— 4— --). —). —3 ---11.

7
small_and_not_
p_or_
hydrophilic

small_and_not_
p_or_polar

—0- —÷-4------ --11. --10.

8 hydrophobic
hydrophobic_
or_small_and_
not_p

—).
hydrophobic_
or_small_and_
not_p

--)..4— .4—

9
aromatic_or_
aliphatic_or_tn

aromatic_or_
very._
hydrophobic

4-- —). --). ____,,. —3.

10
I

tiny_or_polar_
and_not_
aromatic

tiny_or_polar<— —). --O.. --). --3.

11
small_and_not_
p_or_polar —II.4--- ---). —0. —*

+1
411Ioo.

hyrophobic_or_
small all all_minus_p

+2
'.

all_minus_piiiii.......

Figure 2. Variations of rule la selected for at different 'Selection' accuracies. The
'Coverage' is the amount of coverage obtained at this accuracy. The 'highest' accuracy is
the highest possible accuracy that still allowed the threshold number of examples to be
found. The 'best' accuracy is rule la. The order of classes goes from top to bottom. An
arrow through a box means that it contains the same class as 'best' for that position, a
cross means that no class exists.

inversely proportional relationship between correctness of prediction
and coverage; the higher the accuracy the lower the coverage (Table 3).
Both coverage and correctness decrease in the test set although coverage
decreases less. The only rule that does not vary much between training
and test is the lowest accuracy rule. This rule manages to cover 60 per
cent of all alpha-helix residues with an accuracy that is too low for direct
use in prediction but still much higher than the percentage of alpha-helix
in the data base (28 per cent).

304

KING

Table 3. The accuracy, coverage, and evaluation of variations of rule
la selected for at different accuracies with a constant threshold; 'high' is
the highest possible accuracy found for the threshold number of
examples, 'best' is the original rule la.

On training data On test data

0/0 0/0 0/0

Rule Evaluation covered correct Evaluation covered correct

high 0.0248 10 89 0.0057 9 70
>80 0.0332 16 81 0.0027 12 56
best 0.0339 17 79 0.0032 13 56
>70 0.0338 22 70 0.0021 14 47
>60 0.0237 26 60 0.0027 18 47
>50 0.0006 33 50 0.0142 23 39
>40 —0.0884 69 40 —0.0376 60 39

3.4. Experiment 3

This experiment is based on using a form of threshold logic in the
representation of rules. The idea is that a rule can be said to match a
primary structure even if all the class positions of the rule do not match
the primary structure exactly. An example makes this clearer:
The rule

[positive, negative, positive] A
positive = (h, k, r)
negative = (d, e)

makes a mistake in matching the primary sequence

[h, t, r]

(the mistake being that tis not a member of the set 'negative'), therefore
the primary sequence [h, t, r] cannot be said to match the rule head
[positive, negative, positive]. However, if one mistake in matching was
allowed the sequence would be considered an example of the rule.
Allowing one error in matching a rule is equivalent to several rules,

each rule having one position as a 'wild card'.

For example, allowing one error in matching the rule

[positive, negative, positive] A,

is equivalent to the three rules:

[all, negative, positive] A
[positive, all, positive] A
[positive, negative, all] A,

305

PROMIS

It is simpler to write down one rule and allow one error in matching, than
to write down the variations of the rule with the class `all'; this is
especially so if the rule is of greater length.

It is hoped that, by changing the representation in this way, and allow-
ing mistakes in matching, more powerful rules will be found. These
should cover more examples of a particular secondary structure while
still retaining high accuracy and most importantly human comprehen-
sibility. Mistake matching implies a model of secondary structure where
every position in a primary sequence is not vital in forming the second-
ary structure, and where any one position can be substituted without
certain loss of the corresponding secondary structure.
The use of various degrees of matching is a common idea in pattern

matching (Slagle and Gini 1987). Mistake matching is also related to the
technique for dealing with noise known as 'flexible interpretation' of
rules (Michalski et al. 1986, Michalski 1987). The idea also receives
support from the fact that it is one of the types of representation that has
already been used in protein structure prediction (Cohen et al. 1983,
Cohen et al. 1986); however, no attempt has been made to evaluate the
representation's suitability for the problem.
The usefulness of normal rules (with complete matching) was com-

pared with rules that make one mistake in matching. For 13 different rule
types and appropriate splits of the data, rules were sought for both strict
matching and mistake matching and the results compared (King 1988).
Mistake matching rules were found to be less successful than normal
rules in describing and predicting alpha-helices and beta-sheets, but
more successful in describing and predicting turns; the difference
between the two types of rule is more marked in the test set than in the
training set. The different success rate of mistake matching rules in
describing and predicting secondary structure types is probably mainly
due to the structural form of the different secondary types. In alpha-
helices and beta-sheets, every position is important and the inclusion of
an incompatible residue at a position may disrupt the whole protein
structure, e.g. a hydrophilic residue within the internal face of an alpha-
helix. In a turn, every position is not so vital and residues can be added
without disrupting the whole structure of the protein, e.g. it is known that
mutations in proteins tend to occur in turns (Thornton 1986). This
difference in structural nature between turns and other types of second-
ary structure means that mistake matching rules are badly suited for
describing alpha-helices and beta-sheets but well suited for describing
turns.
The two types of rule often resembled each other, suggesting that they

were just different ways of describing the same regularity in the data. For
example:

306

KING

The first rule to be found for predicting turns was:

[all, tiny_or_small_and_polar, all, tiny_or_polar_and_not_aro-
matic_or_p] T

with an evaluation of 0.1167 in the test data. The corresponding mistake
matching rule was:

[glycine, small_and_polar_or_p, all, tiny_or_polar_and_not_aro-
matic_or_p] T

with an evaluation of 0.1648 in the test data.

4. DISCUSSION AND CONCLUSION

Molecular biologists are finding themselves submerged in information
about macromolecular structure (von Heijne 1988). The amount of such
information is already so great that it is beyond human ability to digest it
all; and with the development of faster sequencing machines and the
proposed sequencing of the human genome the amount of information is
set to increase by several orders of magnitude.
The data are held in very large data bases, the most important of which

are GenBank which contains DNA sequence data (Los Alamos National
Laboratory, Los Alamos, New Mexico 87545, USA), PIR which
contains protein primary structure data (National Biomedical; Research
Foundation, Georgetown University Medical Center, 3900 Reservoir
Rd., NW, Washington DC 20007, USA) and Brookhaven which
contains tertiary structure (Brookhaven National Laboratory, Upton,
New York 11973, USA). These data bases hold many important secrets,
some of which should be capable of being discovered by machine learn-
ing. Possible problems in molecular biology to which PROMIS or other
machine-learning programs could be applied are recognition of patterns
for: antigen binding sites, prediction of RNA secondary/tertiary structure,
protein initiation sequences in mRNA, protein coding sites in DNA, gene
•intron/extron juncture sites, DNA transcription promoters, etc. (Haiech
et aL 1986).
PROMIS has learned rules that predict secondary structure with an

accuracy comparable with other existing prediction methods. In contrast
to most other competing methods, the rules are in a form that is humanly
comprehensible and they represent theories about the formation of
protein secondary structure. The true importance of these rules will only
be discovered by a more general airing of the rules to workers in the
subject.

It was found that variations in the generality of a rule could highlight
its important features to molecular biologists and provide aids to their

307

PRO MIS

understanding. A form of rule representation allowing mistakes in
matching the conditional part of the rule was found to be unsuitable for
predicting alpha-helices and beta-sheets but suitable for predicting
turns.

Protein secondary prediction is a well-known difficult problem. It is
therefore unreasonable to expect the problem to be solved easily by the
application of any single new method. However, the inductive learning
approach seems to be capable of making a useful contribution to solving

the problem.

Acknowledgements

I would like to thank my supervisors Peter Mowforth and Profesor McGregor,
along with my domain expert Mike Sternberg. I would also like to thank
Professor Michie and Pete Clark for their advice. This work was supported by
a grant from the Department of Computer Science at Strathclyde University
and a grant from the SERC.

REFERENCES

Anfinsen, C. B., Harber, E., Sela, M., and White, F. H. (1961). The kinetics of formation

of native ribonuclease during oxidation of the reduced polypeptide chain. Proceedings

of the National Academy of Sciences (U.S.) 47, 1309-14.
Barr, A. and Feigenbaum, E. A. (eds) (1983). The Handbook of Artificial Intelligence.

Pitman, London.
R. (1987). Beam Search. In Encyclopaedia of artificial intelligence (eds S. C.

Shapiro, and D. Eckroth) pp. 56-57. Wiley Interscience.
Buchanan, B. G. and Feigenbaum, WA. (1981). Dendral and Meta-Dendral: their
application dimension. In Readings in Artificial Intelligence (eds B. L. Webster and N.

J. Nilsson) pp. 313-22. Tioga, Palo Alto, Ca.
Clark, P. and Niblett, T. (1987). Induction in noisy domains. In Progress in machine
learning (eds I. Bratko and N. L. Lavrac) pp. 11-30. Sigma Press, WimsloW, England.

Cohen, F. E., Sternberg, M. S. E., and Taylor, W. R. (1982). Analysis and prediction of

the packing of alpha-helices against a beta-sheet in the tertiary structure of globular

proteins. J. Mol. Biol., 156, pp. 821-62.
Cohen, F. E., Abarbanel, R. M., Kuntz, I. D., and Fletterick, R. J. (1983). Secondary

structure assignment for alpha/beta proteins by a combinatorial approach.
Biochemistry, 22, pp. 4894-905.

Cohen, F. E., Abarbanel, R. M., Kuntz, I. D., and Fletterick, R. J. (1986). Turn
prediction in proteins using a pattern-matching approach. Biochemistry, 25, pp.

266-75.
Dietterich, T. G., and Michalski, R. S. (1983). A comparative review of selected methods
for learning from examples. In Machine learning: an artificial intelligence approach

(eds R. S. Michalski, J. Carbonell, J. G. and T. Mitchell) pp. 41-81. Tioga, Palo Alto,

Ca.
Gibrat, J. F., Gamier, J., and Robson, B. (1987). Further development of protein
secondary structure prediction using information theory: new parameters and
consideration of residue pairs. J. Mol. Biol. 198, pp. 425-43.

Haiech, J., Quinqueton, J., and Sallantin, J. (1986). SEQUOIA: Concept formation from
sequential data. Proc. EWSL-86, Paris.

308

KING

Kabsch, W. and Sander, C. (1983a). Dictionary of protein structure: pattern recognition
of hydrogen-bonded and geometrical features. Biopolymers, 22, pp. 2577-637.

Kabsch, W. and Sander, C. (1983b). How good are predictions of protein secondary
structure? EE.B.S. Letters, 155, pp. 179-82.

King, R. D. (1987). An inductive learning approach to the problem of predicting a
protein's secondary structure from its amino acid sequence. In Progress in machine
learning (eds I. Bratko and N. L. Lavrac) pp. 230-50. Sigma Press, Wimslow, England.

King, R. D. (1988). A machine learning approach to the problem of predicting a
protein's secondary structure from its primary structure. Ph.D. Thesis, University of
Strathclyde, U.K.

Lathrop, R. H., Webster, T. A., and Smith, T. F. (1987). ARIADNE: Pattern-directed
inference and hierarchical abstraction in protein structure recognition.
Communications of the ACM 30, pp. 909-21.

Levin, S. M., Robson, B., and Gamier, J. (1986). An algorithm for secondary structure
determination in proteins based on sequence similarity. EE.B.S. 205, pp. 303-8.

Lim, V. I. (1974a). Structural principles of the globular organization of protein chains: a
stereochemical theory of globular protein secondary structure. J. Mol. Biol. 80, pp.
857-72.

Lim, V.1. (1974b). Algorithm for prediction of alpha-helical and beta-structural regions
in globular proteins. J. Mol. Biol. 80, pp. 873-94.

Michalski, R. S. (1983). A theory and methodology of inductive learning. In Machine
learning: an artificial intelligence approach (eds R. S. Michalski, J. Carbonell, J. G. and
T. Mitchell) pp. 83-134. Tioga, Palo Alto, Ca.

Michalski, R. S. (1987). How to learn imprecise concepts: A method for employing a
two tiered knowledge representation in learning. Proc. Fourth International Workshop
on Machine Learning, pp. 50-8. Morgan Kaufmann, Los Altos, Ca.

Michalski, R. S., Mozetic, I., Hong, J., and Lavrac, N. (1986). The multi-purpose
incremental learning system AQ15 and its testing application to three medical
domains. Proc. A.A.A.L -.5, pp. 1041-5. Morgan Kaufmann, Los Altos, Ca.

Michalski, R. S., and Stepp, R. E. (1983). Learning from observation: conceptual
clustering. In Machine learning: an artificial intelligence approach (eds R. S. Michalski,
J. Carbonell, J. G. and T. Mitchell) pp. 331-64. Tioga, Palo Alto, Ca.

Michie, D. (1982). Machine intelligence and related topics. Gordon and Breach Science
Publishers.

Mitchell, T. M. (1982). Generalization as search. Artificial Intelligence, 18, pp. 203-26.
Mozetic, I. (1986). Knowledge extraction through learning from examples. In Machine
learning: a guide to current research (eds T. Mitchell, J. Carbonell, and R. S. Michalski)
pp. 227-31. Kluwer Academic Publishers.

Qian, H. and Sejnowski, T. J. (1988). Predicting the secondary structure of globular
proteins through neural network models.). Mol. Biol. 202, pp. 865-84.

Rendell, L. (1988). Learning hard concepts. Proc. International Workshop in Change of
Representation and Inductive Bias-I. pp. 70-100.

Roberts, L. (1987). New sequencers to take on the genome. Science, 238, pp. 271-3.
Rooman, M. J. and Wodak, S. J. (1988). Identification of predictive sequence motifs
limited by protein structure data base size. Nature, 335, pp. 45-9.

Schiffer, M., and Edmundson, A. E. (1967). Use of helical wheels to represent the
structures of proteins and to identify segments with helical potential. Biophysical
Journal, 7, pp. 121-35.

Schulz, G. E. and Schirmer, R. H. (1978). Principles of protein structure.
Springer-Verlag.

Seshu, R., Rendell, L., and Tcheng, D. (1988). Managing constructive induction using
subcomponent assessment and multiple-objective optimization. Proc. International
Workshop in Change of Representation and Inductive Bias-I. pp. 293-305.

309

PROMIS

Slagle, J. and Gini, M. (1987). Pattern Matching. In Encyclopaedia of artificial
intelligence (eds S. C. Shapiro and D. Eckroth) pp. 716-20. Wiley Interscience.

Smith, L. M. (1987). Automated DNA sequence analysis: guide to biotechnology
products and instruments science. Nature, 235, No. 11,089.

Sternberg, M. S. E. (1983). The analysis and prediction of protein structure. In
Computing in biological science (eds Geisow and Barrett), Elsevier Biomedical Press.

Taylor, W. R. (1986). The classification of amino acid conservation. J. Theor. Biol., 119,
pp. 205-21.

Thornton, J. (1986). Loop regions in proteins: their structure, prediction, and
antigenicity. Proc. SERC Collaborative Computational Project in Protein
Crystallography (CCP4), Daresbury.

von Heijne, G. (1988). Getting sense out of sequence data. Nature 333, pp. 605-7.

310

20

Design of Knowledge Processing

Systems—Principles and Practice

S. Ohsuga
Research Center for Advanced Science and Technology,
University of Tokyo, Japan

Abstract

In this paper we discuss some ideas for making intelligent computer
systems really useful and a system developed based on the idea. Key
issues in designing such a system are the knowledge representation
language and system management. The issues relate closely to the
manner of solving problems. The analysis of problem-solving processes
by human beings suggests to us that a model-based method must be
adopted as a new generic method of problem-solving by computers. The
method involves operations to build and modify the model as well as
capabilities for model analysis and evaluations. The knowledge
representation language must be designed so as to be suitable for rep-
resenting both the model itself and the model building-analysis-manipu-
lation process. The system must also have the system management
capability to define the best scope of knowledge relevant to solve each
domain-specific problem and to maintain the system consistency. In this
paper we discuss a general view for the design philosophy of such an
intelligent system and an implementation.

1. INTRODUCTION

Expert systems have been developed as an embodiment of artificial
intelligence (AI) (Hayes-Roth 1983) and it expected that they will enable
us, by means of inference mechanisms, knowledge bases and search
methods, to solve problems in a most different way from conventional
information processing. In reality, expert systems currently in use are
applicable only to a limited class of rather small-scale problems. More-
over, they are not always powerful enough to cope with some type of
applications. For example, engineering designers hoped that AI tech-
nologies would have substantially advanced CAD (Ohsuga 1985b) but
current expert systems are rarely powerful enough to meet their needs.
In this paper we investigate the reason.
A number of conditions must be met to make knowledge processing

311

DESIGN OF KNOWLEDGE PROCESSING SYSTEMS

systems useful. We have analysed problem-solving processes by human
beings in many problem domains. In this paper we discuss ideas for
making intelligent computer systems really useful irrespective of the
types of application. Then we present a system developed based on these_
ideas. Hereafter in this paper, we use the term 'knowledge processing
system' rather than 'expert system' because we wish to consider new
information processing systems in general.
One of the key issues in designing general-purpose, intelligent systems

is knowledge representation. It relates closely to the manner or the style
of solving given problems. Analysis of problem-solving processes by
human beings suggests to us that model-based methods must be
adopted for complex problem solving (Brodie et al. 1984). Generally
speaking, a model is composed of stuctural information together with a
set of descriptions of the attributes, properties, functions, and so on, of
the model or its components, called 'functionalities' in this paper.
Model-based methods of problem-solving involve operations to build
and to modify the model as well as capabilities for model analysis and
evaluation. Thus the knowledge representation must be suitable for this.
Model-based methods also require a powerful system management

capability. Search for relevant knowledge for given problems occupies a
large part of the processing time. Restricting the scope of the search
effectively is the role of the management system. It applies meta knowl-
edge to problem-solving at the object level (Davis 1980).
We have designed a system named KAUS (Knowledge Acquisition and

Utilization System) embodying these ideas (Yamauchi and Ohsuga
1985). We have analysed the requirements for a knowledge representa-
tion language and developed a language to meet them (Ohsuga 1983 and
1985a). This is characterized by 'predicate logic + data structure'. An
inference algorithm has been defined in this language. The overall
management system is not yet implemented but is under way. We show in
this paper that this system is suited for solving a wide class of problems
including those requiring trial-and-error processes for goal-seeking.
This paper is composed of two parts. Section 2 discusses a way to

make intelligent systems really useful. In Section 3 KAUS is presented as
an embodiment of those ideas.

2. KNOWLEDGE PROCESSING SYSTEMS

In this section we consider the concept and some important aspects of
knowledge processing systems.

2.1. Formalizing the problem-solving process

As the first step we investigated the problem-solving processes of human
beings in various domains and defined them as composed of the model-

312

OHSUGA

building sub-process and the model evaluation sub-process as shown in
Figure 1. This figure shows a general framework: specific processes may
differ from one another. For example, for the problem to which a model-
building method has already been applied, the model-building sub-
process may degenerate.

Model-building

[Desigr]
etc.

Model-based
activity

Decision-making
Manufacturing
Control
Model-evaluation
etc.

Figure 1. Formulation of the problem-solving process.

The process begins with the problem, see Figure 1, left. The problem
solver makes an initial model and analyses it to obtain its functionalities.
If the results show that the model is not a faithful representation of the
problem, then the problem solver modifies the model and repeats the
process. When all conditions are met, the model-building process ends
and the problem solver moves to the model evaluation process. During
this process information may be added to refine the model as shown in
Figure 2.
The model-building sub-process is defined more clearly for synthetic

problems, see Kalay etal. (1987). Here, the model is a chunk of informa-
tion expressing various aspects of objects in terms of which the problem
is defined. They are classified into two classes by the form of informa-
tion: one representing object structure and another representing
functionalities. Model structure is represented by a data structure while
functionalities need to be described in the form of predicates. Tliese two
must be connected tightly in the model representation. Then the
problem type is classified by the types of operations to the model: the
analytic problem is to derive the requested functionalities for the given
model structure while the synthetic problem is to obtain the model

313

•.■

DESIGN OF KNOWLEDGE PROCESSING SYSTEMS

(Start

4,
Conceptual
modelling

C-model
evaluation

Preliminary
modelling

P-model
evaluation

De all
modelling

D-model
evaluation

(End)

■ •••„ ,

o cc "o b t • • •

Rough
model

Preliminary
model

Detail
model

Model
representation

—4=1 Description

Figure 2. Incremental process of model refinement.

structure that meets the given requirements represented in the form of
functionalities.

2.2. Enhancing problem-solving capability

Our objective is to enhance the computer's processing power to aid this
problem-solving process. There are a number of possibilities. Among
them the following two are expected to be most effective;

(1) to automate as many individual operations (shown by the block in
Figure 1) as possible

(2) to integrate these#different operations so that any problem-solving
process proceeds mostly autonomously in transferring the job from
one opdration to the next (Ohsuga 1985b).

314

OHSUGA

To fulfil the first objective, we need to give computers the capability to
use different methods to achieve the goal and to deal with different forms
of information for the purpose. For example, the object model must be
analysed and evaluated in many aspects depending on the requirements
involved in the problem. For some aspects, analytical methods are estab-
lished and specific programs, such as structural analysis programs, are
available.
For other aspects we need to use data bases directly for model evalu-

ation. In other cases there is no analysis-and-evaluation method other
than the engineer's experience. Thus the available information is differ-
ent depending on the aspect of the model. Knowledge processing
technology has to adapt to this situation.
In order to achieve the second objective, various capabilities are

required. First of all, the model must be represented in the system in
such a way that various methods as above are applicable directly to the
model. Very often different information and different methods must be
used together to achieve model analysis, evaluation, and modification in
the same system: i.e. different operations must be integrated for the same
purpose. For example, man's experience must be applied to the model in
combination with the data in data bases.
Though the real problem-solving process is different for each specific

problem in the general framework of Figure 1, the model analysis sub-
process is involved in every case. The use of conventional computers is
necessary in analysing the model, and some capability for automatic
programming is required. Currently program synthesis is exclusively a
manual task. The main difficulty involved in program generation is in
most cases that of problem-solving.
Figure 3 shows a simple example. Let us assume that we are going to

design a control system. A tentative model is made (Figure 3a) and we
wish to know its characteristics. We need the computer to generate what
we want as a transformation of the model information. In this example,
the object model is first transformed to a signal flow graph (Figure 3b).
Then the sets of all local loops and open paths are derived (Figure 3c)
with their respective local transfer functions. The global transfer
function of the control system can be obtained by applying a mathe-
matical operation to the sets (Figure 3d). This method is Mason's Gain
Rule (Gene 1982). Then the response function can be obtained, given an
input function, by means of a mathematical formula processing system
such as the inverse transformation. Different outputs such as root locus
can be obtained too without difficulty after the global transfer function is
obtained. This is an example that has been successfully executed by KAUS
using different knowledge sources and a mathematical formula manipu-
lation system.

Various analysis methods for obtaining functionalities of the given

315

DESIGN OF KNOWLEDGE PROCESSING SYSTEMS

G1=3/s
G2=1/(s+ 4)

G3=1/(4*s)
G4=4

G5=(s+2)1(s**2-8)
H1=-1

H2=-1

(a)Block diagram

(b) Signal flow diagram

loop-set=(G3 G4 G5 B1 H2) (G1 G2 H2) (G4 G5 H1))

open-path-set= {(B0 G3 G4 G5 B1) (BO G1 G2))

(c) Local transfer function set

G(s)=(4*s+2)1(s *3+4*s**2+444+2)

(d) Global transfer function

Y = f(t ,R) .

(e) Response function

(g) Result

Figure 3. An example of problem-solving.

316

PB

Program

(f) Program

KB; Knowledge Base

PB; Program Base

011SUGA

model structure such as Mason's method in this example have been
studied and accumulated in each problem domain. These methods are
used effectively for problem-solving by a human problem-solver. This
example shows that knowledge processing systems must be able to
represent and use these methods. To use them together with human
experience, intuitions and so on makes for effective problem-solving.
From these discussions we conclude that knowledge processing

systems must be provided with a language that is at a higher level than
that of an ordinary programming language. It must be able to describe
any kind of model and any type of method for analysing, evaluating, and
modifying models in different forms such as procedures, data bases, and
man's experiences. The system must also be provided with mechanisms
for processing any expression in this language. This language is the
knowledge representation language and its processor is an inference
mechanism.

2.3. Knowledge representation

One of the key issues in model-based problem-solving is knowledge
representation.

First of all it must be suitable for building and manipulating a model to
look for the solution of the problem. At the same time, there must be
very smooth man-machine communication. The requirements are listed
in Table 1 (Ohsuga 1985a).

Table 1. Requirements for knowledge representation.

(a) Requirements for modelling capability

(1) Automated consistency checks
(2) Declarative forms
(3) Complete deductive inference
(4) Complex model representation
(5) Dynamic model building/manipulation
(6) Ability to handle a large amount of data

(b) Requirements for smooth man—machine communication

(7) Declarative forms
(8) Complete deductive inference
(9) Conversion to internal language
(10) Acceptance of external languages

2.4. Management of knowledge processing

A good knowledge representation language is essential in ensuring that
the system achieves these goals. The model-based method of problem-
solving includes operations to modify the model. Model analysis and

317

DESIGN OF KNOWLEDGE PROCESSING SYSTEMS

evaluation are the operations necessary to derive a requested function-
ality of the given model. The functionality is consistent with the model
structure in the sense that the structure has the functionality. On the
other hand, the model modification is the operation required to modify
either the structure or some functionalities of a consistent model. It
therefore breaks the consistency of the model and asks the operator or
the system to recover this consistency. A single modification operation
may induce a sequence of analyses and evaluations to recover consist-
ency for the modified model. ,
Let us assume that the knowledge processing system is provided with a

management system that always keeps the model consistent. Then the
analysis-evaluation operations are under the control of this system. On
the other hand, the modification operation needs to activate the manage-
ment system to recover the consistency of the model. Thus modification
is an operation at a higher level than that of analysis-evaluation. This
means that intelligent systems operate at different levels.
Various models are generated during the model-building process.

Each model must be managed separately by the management system.
Generally speaking the task is to define and manage the different chunks
of information in a knowledge base. It is desirable to give descriptions of
each chunk. This is meta-level knowledge. Similarly it is possible to
define meta-meta-level and so on. Managing these levels is an important
role of the management system.

3. KAUS—A KNOWLEDGE PROCESSING SYSTEM

We have designed a knowledge processing system named KAUS (Knowl-
edge Acquisition and Utilization System) along these lines.

3.1. 'Predicate logic+ data structure' as the knowledge representation language

A knowledge representation language is designed to satisfy the require-
ments listed in Table 1. To satisfy all requirements for man-machine
communication ((7), (8), (9), (10)) as well as some for the modelling
((1), (2), (3), (6)), we decided that the language must be based on
predicate logic (Chang 1972). In order to satisfy the remaining require-
ments ((4), (5)) for modelling, it must be expanded to involve various
data structures as arguments of predicates. This has been achieved in
two steps:

(1) defining data structure (type)

(2) introducing it into predicate logic.

These issues are discussed in the following two sections.
This language can express knowledge in the object-oriented way, that

318

OHSUGA

is, the object structure is defined and descriptions are given to this
object.

3.2. Data structure as a generalized set

In order to define such language it is necessary to make clear the concept
of data structure in a declarative language. Conceptually it must be very
different from that of an ordinary (procedural) programming language
because of the difference in the semantics between these languages. Any

data structure in a declarative language corresponds to a structure of a
real entity in the world being described. In other words, a data structure
defined in a declarative language must be such that any real structure
corresponds to one of the data structures defined in the language. What
is such a set of data structures? We introduce the idea of axiomatic
(Zermelo—Fraenkel) set theory (Krivine 1971) in KAUS in defining such a
set. The theory says that a largest set of entities free from any contradic-
tion must be defined in a constructive way by using a finite set of primi-
tive constructors (to define a set otherwise can cause contradictions such
as that known as Russell's paradox). The term 'set' is almost equivalent
to 'data structure' from the point of view of information processing.
A set of the primitive structural relations including 'element-of (E)',

'component-of ()', 'power-set-of (*)', 'product-set-of (x)', 'union-of
(U)', 'intersection of (11)% and 'pair-of (K))' are provided with KAUS.
These are the structural relations and at the same time work as the struc-
ture constructors if one of the entities that should be in the given relation

is not yet defined. The set of constructors has been defined with
reference to the theory but with slight modifications. For example,
'component-or is added to represent a hierarchical structure existing in
the real world that has no property inheritance.
Any structure constructed as an arbitrary compound of the above is

allowed in KAUS. The set of all entities including the given primitives and
those that can be generated from them forms the universe. Hence the
universe of KAUS involves every structure that can appear in mathematics
as well as the hierarchical structure in the real world. The definition of
these set-constructors is presented in Table 2.
Note that any element of a set can also be a set. Thus the set is itself a

structure. For example, a set *n Xis obtained by applying the power-set
constructor repeatedly n times to the given set X, that is, *n X= *(*fl — 1
X). This represents a set of all n-level hierarchical structures that can be
constructed from the set X Any specific hierarchical ,structure
constructed from Xis an element of the set.

Various useful data structures or relations are defined as the com-
pounds of these primitive constructors. Let © denote a compound
operator. Some examples are shown in Table 3. In these structures, hier-
archical structure and graphs are very frequently used.

319

DESIGN OF KNOWLEDGE PROCESSING SYSTEMS

Table 2. A set of primitive constructors.

Constructor Symbol Definition

(1) element-of E X E X means that an entity xis an element of a set
X.

(2) component-of <1 Let Xbe assembled of the parts yl, y2, . , yn.
Let Ybe the set of the parts, that is, Y= {yl, y2,
, yn}. Then, XI> Y

(3) power-set-of Y=*Xdenotes that Y is the set of all subsets of
a set X

(4) product-set-of X Y= X1 x X2 x x Xn = x Xi denotes a
Cartesian product of Xi, i= 1, 2, ... , n.

(5) union-of U Y= X1 U X2 U U Xn= U Xi denotes a union
set of Xi, i= 1, 2, ... , n.

(6) intersection-of (1 Y= X1 n X2 n . . . n Xn = n xi denotes an
intersection of Xi, i= 1, 2, ... , n.

(7) pair-of When X1 and X2 are the sets, then y(X1, X2)
is an allowable entity.

Table 3. Compound structures

Structure Symbol Definition

(1) subset-of C Xc Y= XE (* Y) or = EC*
(2) part-of yi<IXdenotes yi is a part of X. Then

yi4X= yiE Y and Y<IX,or =E©.
(3) table-of T A table T is defined as a set of n-tuples. Then

Table (Xi, X2,. . . , Xn)=
ce x Xi= EC*10 x Xi.

(4) graph-of G A graph is defined as the compound of a pair of
tables; a table of nodes and a table of edges. Let
N and E be the tables of nodes and edges re-
spectively. Leg G be a graph. Then G N and
GI>E where E= E*(N x N)

3.3. Predicate logic based on the set concept

Data structure is involved in predicate logic by expanding the syntax of
many-sorted logic, a branch of ordinary first-order predicate logic,
(Enderton 1972) and by including data structure in the definition of the
term. It means that a functionality is decribed by the predicates on an
object that is represented by the data structure (Ohsuga 1983 and
1985a). With this logic a predicate is represented in the form of (Vx/
X)F((x) or (3x/ X)F(x) where Xis a set in the universe and x/X denotes
xE X. (Vx/X)F(x) and (3x/ X)F(x) are read 'for all x in X, F(x)' and 'for

320

OHS UGA

some x in X, F(x)' respectively. These expressions are the equivalent of
expressing (Vx) [xE X— F(x)] and (3x)[x€Xn F(x)] respectively in
ordinary predicate logic. X can be any set and therefore can be the
generalized set defined above. Thus x can be an individual structure and
this predicate gives an expression on the structured object. Or, in other
words, this predicate logic involves an object-oriented data type. This is
especially important from the practical point of view because it can
represent functionalities on any hierarchical object. As its natural
extension, it is possible to represent functionalities on some component
of given hierarchical objects. For example, an expression such as (3x/
X)(V y/ x)F(y) is possible, meaning 'for all components y of some
component x of X, F(y)'. Or, let Xbe a power set of the given set W. Then
(3X/* W) (V x/ X)F(x) requires the system to obtain a subset Xof W such
that every element x of X satisfies F(x). Here * W denotes a power set of
W. This is the basic form of giving a constraint to the candidate set W to
filter out the set X of such elements x that meet the given condition. We
call the system Multi-Layer logic or mu, for short. We show in the
following a few examples of mu, expressions:

[A] Representation of basic mathematical concepts;

1. The maximum number in the given set;

[VX/*int] [V Y/X] ((max X Y) ((V N/ X) (Y› N))
where *int means the power set of integer and, therefore, X/*int
means Xc integer. Note that a variable (Xin this example) can be the
domain of the other variable (Y).

2. The subset of the other set;

[V U/* d] [V V/*d] ((subset U V) +- ([V X/Il [3Y/ U] (X= Y))
is used to examine whether a set (V) is a subset of the other set (U).

3. The intersection of the given sets;

[V X/* cl] [V Y/* cl] [V Z/*cl]
((intersection X Y Z) (([MU/Z) ([3S/ X] (U= S), [3T/ (U= T)))
where the symbol M is used to represent a special meaning. It is used
in the form of [MS/X] (p S) to mean that X is the set of all S's that
meets the condition (p5).

These are special examples to show the expressive power of KAUS. It is
to be noted that the inference mechanism of the KAUS system described
below can cope with these expressions directly. It is also to be noted that
no recursive form is used in expressions to represent such mathematical
concepts as those above which usually need recursive form. This is an
important condition for a language from the user-interface point of view.
For we do not usually use recursive expression in the real word. It is the

321

DESIGN OF KNOWLEDGE PROCESSING SYSTEMS

role of computer systems to transform these expressions into recursive
form for the purpose of processing by machine, if necessary.

[B] Representation of an analysis method-an example of path-finding
for problems represented in graph form

In order to aid problem-solving, systems must be able to represent many
established analysis methods developed in each problem field. The
following is an example used to obtain the path for problems represented
in graph form.

[V G/graph] [V/v, VFv/vertex] [VPath/*vertex] [VD/*int] [VN/int]
((path G Iv Fv Path) 4-- (number Path ND), (element-of Path 1 Iv),
(element-of Path N D), [VN2/D] [Arc/G*g- a] [3N3/int] ((is N3
N2 + 1), (element-of Path N2 Arc:ip), (element-of Path N3 Arc:tp)))

where (path G lv Fv Path) denotes that (an ordered set) Path is the path
starting from the starting point /v to the goal point Fv in the graph G;
(number Path ND) denotes that the Path corresponds to the set D of N
elements; (element-of Path X Y), denotes that the X-th element in the
ordered set Path is Y respectively. Arc:z is a special syntax to refer to z
components in the hierarchical structure Arc. The body of this formula
says that the path is the ordered set of nodes in which adjacent elements
are the starting point and the end point of an arc. To represent concepts
defined in graph theory is quite important because many problems are
solved after being translated into a graphical form.
Thus the KAUS knowledge representation language can correspond

directly to various concepts included in the expression in the external
language such as natural language and picture drawing and it is also well
suited for representing various kinds of models and their manipulations.

3.4. Inference of mu.

There is the following equivalence rule;

XD Y [(V x/ X)F(x)-• (Vx/Y)F(x)]
Xc Y ++[(3x/X)F(x)- (3x/Y)F(x)]
X 84Y 0 [(V x/ X) F(x) (3x/Y)F(x)]

These relations are used for inference. Unification by symbol manipu-
lation can be replaced by the test for set-theoretical relations between
the domain sets. As any compound structure can be decomposed to
elementary sets, the set-theoretical relation as above can be decomposed
to a set of set-theoretical relations between elementary sets. A few exam-
ples of decomposition theorems are given below:

(1) Xc *Xc* Y
(2) *(xn Y) -*xn*Y

322

OHSUGA

(3) if U X0 X, then Xc *(U X)
(4) if U X0 X, then uxcy. xc* y
(5) if U X0 X, then xn* YO 0 uxn YO 0

The other part of the inference method is the same as standard
resolution.

3.5. Knowledge structure composed of the relations between entities

To aid the test for the set-theoretical relation between elementary sets, a
conceptual entity network is formed. Every entity defined to the system
is linked to every other by primitive structural relations to construct a
conceptual entity network. Then the test is performed by traversing the
network in a specific way.
Every logical predicate is embedded in the network in such a way as to

link predicate entities to network entities. This forms a knowledge
structure.
This network is also effective defining an arbitrary local world. A local

world is defined as being composed of a subset of entities in the universe
and a set of logical formulas that includes the entities in this subset or in a
region specifically related with it as the arguments. The mechanism for
defining the local world is itself a data structure but is separated from the
object level structures. This mechanism is managed by the management
system and forms the multi-level organization.

3.6. Object model

The object structure and its descriptions are amalgamated in order to
represent a model in KAUS. A modeL forms a local world in the
knowledge structure. An example of a model representation is shown in
Figure 4.
Any predicate can include structured objects as the arguments. The

predicate is linked to the root node representing the object structure. At
the same time, the structure can include the other predicates linked to
the lower-level nodes as the structural constraints or describe the
functionalities of the sub-structures represented by these nodes. Thus
the predicates involved in this structure are related to each other
indirectly through the structure. This facilitates the handling of
constraint propagation. The fact that a model is a part of the knowledge
structure means that the amalgamation of object structure and its
descriptions is a particular feature of the KAUS knowledge representation
(see Figure 4).

3.7. Integration of resources in KAUS

The knowledge representation language of KAUS also plays an important
role in integrating the various resources in the system. As has been

323

DESIGN OF KNOWLEDGE PROCESSING SYSTEMS

(x/ #s1) (Vy/x)
Distance (y #p 5)

EULAR_CONDITION (#H)

PARALLEL

(#ss 11)

LENGTH 1'

(#12 7)

(a)

(b)

/11

Figure 4. Model representation.

mentioned in the requirements for the knowledge representation,
knowledge processing must be used together with conventional infor-
mation processing. In fact, most of the real operations on the model are
executed by conventional programs.

3.7.1. Use of existing programs

KAUS has a set of built-in predicates called procedural type atoms (PTA).
Each PTA has a corresponding procedure in the procedure base which is
evoked by the inference mechanism when a certain condition is met.
Then it is executed to return the value(s) of some variable(s) as the
result. Each PTA is represented by the procedure name followed by the
input and output variables included in the program. KAUS is ready to
accept any kind of procedures defined by the user with its PTA.
Only specifically written programs can be used with this method. For

transferring control between the knowledge level operation and the
programs developed independently with KAUS, another way of linking is
provided. For example, in a version of KAUS running under Unix a special

324

OHSUGA

PTA named 'exec' is used. The exec-PTA is a second-order predicate and
accepts a program name as an argument. It interprets the first argument
as the program name and the remainder as the arguments of this
program. It uses the fork-and-execute mechanism of Unix. It evokes a
specified program and receives the result. Then it returns to the
inference mechanism either 'yes' or 'no' according to the end code of the
program. Thus it is possible to use every program working under the
Unix system. A set of these programs forms the program base.

3.7.2. Integrating data bases with knowledge bases

Integration of knowledge bases and data bases is a particularly important
issue (Gallaire et al. 1984). In order to deal with a large set of data to
represent a model structure, the use of data bases is mandatory. Data
bases used for this purpose must be able to store the structured object.
We need a data base with a specifically designed data model. Moreover,
knowledge processing systems must be able to communicate with the
existing DBMS in order to use the data in the existing data bases. Thus
KAUS is provided with two types of data bases with different couplings:
tight coupling and loose coupling. For the former, any access method can
be defined at the knowledge level and executed by the inference mechan-
ism incorporated with a PTA mechanism. The data model is expanded so
as to represent complex data objects.
An example is shown in Figure 5. Figure 5a shows a knowledge level

data structure representing a set of graph structures, each of which is
composed of two table-type relations in the data base to represent a set
of nodes and a set of arcs respectively. In this figure, the root node rep-
resents the set of graph structures, net i, defined in the data base. The
graph also has some attributes attached to each node or each arc which
are shown stored in the 'comp' relations in Figure 5a. Object model
structures in many KAUS applications are, in reality, represented in the
data base.
For the purpose of communicating with the conventional processing

level, the data structure of Figure 5b is used in the KAUS knowledge base.
It is composed of the pipe descriptor for communication and the name of
the file to be used for data exchange with the data base. We call this data
structure the 'port'. There is a set of ports in the knowledge base to
communicate with different data bases.
As the existing DBMS cannot be modified for the purpose of inte-

gration, the loosely-coupled method becomes necessary. KAUS generates
the access commands to these data bases. The same data structure as in
Figure 5 is used. KAUS knows, referring to the data structure, the relation
schema and data base schema of the data base and generates an inter-
mediate code using this information. Then the code is translated to the

325

DESIGN OF KNOWLEDGE PROCESSING SYSTEMS

ELEC_NET

{netl, neti, }

dgraph (3) comp

P

vertex arc arc cp vat

wl W WI
#al #C 0 011

{#v1,#v2,...) w #a2 #L 011

{#al,#a2,...}

\

vl #v2

pipe

/1
w

{pipe 1,pipe 2,...

#dset(DI (3) #mbox

{5,4} {"DATA0000001"}

(a) Representation of complex (b) Representation of
object model communication ports

Figure 5. Media for knowledge-base and database communication.

commands each DBMS requires. Now KAUS is able to access two different
DBMSS as well as generating SQL commands.
In either communication, KAUS is the master and the DBMS is the slave.

What we wish to stress here is the fact that this type of integration
became possible because the knowledge representation can deal with the
data structure. This is quite important because, otherwise, the communi-
cation method cannot be represented in the knowledge base and, as a
consequence, the knowledge processing part must be the slave in the
system.

3.8. User interfaces

A good user interface is always important (Fitter 1979). However, it is
particularly important for knowledge processing systems. A user inter-
face has been implemented in KAUS to allow a mixture of various media
such as a subset of natural language, mathematical formulas, and picture
drawing on the multi-window system. Figure 6 is the interface used in the
example shown earlier in Figure 3.

3.9. Examples of KAUS applications

KAUS has been applied to various problems in order to test its applica-
bility. Figure' 3 (above) shows one of these applications. It represents a

326

/
u
s
r
/
l
o
c
a
l
/
b
I
n
i
a
m
a
g
e
f
i
l
t
e
r

[
t
a
k
e
:
I
t
e
p
p
a
7
4
]
s
c
r
e
e
n
d
u
m
p

I
i
m
a
g
e
f
i
l
t
e
r

I
l
p
r

(
Q
U
I
T
)
 (
P
R
I
N
T
E
R
)
 (
R
E
D
R
A
W
)
 (
C
L
E
A
R
)
 [
M
E
R
G
E
]
 (
W
A
D
)
 (
S
T
O
R
E
)
 I
PI

CT

(
U
N
N
A
K
E
D
)
 (
N
A
K
E
D
)
 R
A
K
E
:

[
M
A
T
H
]
 (
T
E
X
T
)
 S
T
R
I
N
G
:

S
a
m
p
l
e

B
l
o
c
k

D
i
a
g

G
I

3
/
s

G
2

G
3

0
4

G
5 C
l

0
.
5

t

1
.
7
5
4
8
8

y
=
 1
.
2
4
3
3
3

1
0

Fi
gu
re
 6
.
A
n
 e
xa
mp
le
 o
f
th
e
us

er
 i
nt
er
fa
ce
.

a
4(
1
 +
b
*
s
)

I

1
L
S
. (
d
i
s
p
l
a
y
T
i
m
e
R
e
s
p
o
n
s
e
 #
S
C
H
1
 m
o
d
e
l
l
 #
8
4
7
 "
1
.
0
"

1
0
.
0
 5
.
0
e
-
2
)
?

Y
E
S
.

D
i
s
p
l
a
y
 e
n
d
e
d
.

U
s
e

t
h
e
 m
o
u
s
e

t
o

p
i
c
k
 a
 p
o
i
n
t
 w
h
o
s
e
 c
o
o
r
d
i
n
a
t
e
s
'
l
l

b
e
 s
h
o
w
n

T
o

t
e
r
m
i
n
a
t
e
,
c
l
i
p
 b
u
t
t
o
n
 3

DESIGN OF KNOWLEDGE PROCESSING SYSTEMS

control system design. A designer makes a tentative model on the display
using both pictures and mathematical formulas. (We have designed a
natural language interface but it is not necessary for this example). The
block diagram represents an object model in this applicaiton because it is
comprehensible to man and involves all information necessary to
achieve the goal. The object model is transformed to the signal flow
graph. The latter is a model representation transformed from the
original model for the purpose of analysis, to which the existing method
for analysing this diagram (e.g. as Mason's method) can be applied
directly. Then, as discussed before, the sets of local loops and open paths
are derived with their respective local transfer functions. A global
transfer function for the control system can be obtained by a specific
mathematical operation on the sets. The mathematical formula process-
ing system REDUCE has been used. Then various characteristics of this
control system can be obtained. The transformation methods and the
analysis methods are represented in the form of knowledge and are used
by the inference machine. The analytic results are displayed as shown in
Figure 6. This is, however, a very simple example because a completely
analytic method is available to obtain the solution. Nevertheless it is very
useful even in a synthetic problem, because the designer can evaluate his
model rapidly and make the next decision. This accelerates the synthesis
process.
In addition to the above example, the system has been applied to more

complex problems including the electronic circuit analysis, mechanical
design (Han et al. 1987), and the structure estimation of chemical
compounds. Some of the applications need to combine human experi-
ence with established analysis methods. These applications confirmed
the utility of the ideas discussed in this paper.

4. CONCLUSION

We have discussed some basic ideas for ensuring that intelligent systems
are really useful and then presented an implemented system based on the
ideas. This system, named KAUS (knowledge acquisition and utilization
system) has shown a capability in processing information that has not
been achieved by conventional information processing.

Currently only the object level subsystem of KAUS has been developed
and is running. The management system, including multi-level control
and many-world control, is being implemented.

Acknowledgements

The author would like to acknowledge the contribution of Mr H. Yamauchi,
Mr. T. Akutsu, Mr A. Takasu, and Mr J. B. Guan in implementing the KAUS
system.

328

OHSUGA

REFERENCES

Brodie, M. L., Mylopoulos, J., and Schmidt, J. W. (eds) (1984). On conceptual
modelling—perspectives from artificial intelligence, databases and programming
languages, Springer-Verlag.

Chang, C. L. and Lee, R. C. T. (1972). Symbolic logic and mechanical theorem proving,
Academic Press.

Davis, R. (1980). Meta-rules: reasoning about control. Artificial Intelligence 15 No. 3,
pp. 179-222.

Enderton, H. B. (1972). Mathematical introduction to logic, Academic Press.
Fitter, M. (1979). Towards more natural interactive systems, Internat. J. Man-Machine
Studies 11, pp. 339-50.

Gallaire, H., Minker, J., and Nicolas, J. M. (1984). Logic and databases; a deductive
approach, Computing Surveys 16, No. 2.

Gene, H. H. et al. (1982). Design of feedback control systems, Holter-Saunders.
Ilan, G., Ohsuga, S., and Yamauchi, H. (1987). The application of knowledge base
technology to CAD. In Expert Systems in Computer Aided Design (ed. J. Gero),
North-Holland, pp. 25-55.

Hayes-Roth, F. et al. (1983). Building Expert Systems, Addison-Wesley.
Kalay, Y. E., Swerdloff, L. M., and Harfmann, A. C. (1987). A knowledge-based
computable model of design, Preprints Working Conference W.G.5.2 on Expert
Systems in Computer-Aided Design.

Krivine, J. L. (1971). Introduction to axiomatic set theory, D. Reidel Pub. Co.
Ohsuga, S. (1983). A new method of model description—use of knowledge base and
inference, in CAD System Framework (eds K. Bo and F. M. Lillehagen),
North-Holland, pp. 285-312.

Ohsuga, S. (1985). Multi-layer logic—a predicate logic including data structure as
knowledge representation language, New Generation Computing, 4, (Special issue on
knowledge representation), Ohmsa Ltd. and Springer-Verlag.

Ohsuga, S. (1985). Introducing knowledge processing to CAD/CAM, Finite Elements
in Analysis and Design, 1, pp. 255-69.

Yamauchi, H., and Ohsuga, S. (1985). KAUS as a tool for model building and
evaluation. In Proc. 5th International Workshop on Exert Systems and Their
Applications, Avignon, France, May 13-15.

329

INDEX

Note: illustrations and captions are indicated by italic page numbers, foot-
notes by suffix 'n'.

absorption operator, DUCE's use of 94,
97, 176

abstraction
qualitative modelling at various levels of

259-79
with respect to a constant 85

ACLS algorithm 197, 206
active learning, data acquired by 170
actor-oriented coordinate frame

advantages of 237
decision tree for 232, 233
object-pushing experiment 232

Ajdukiewicz's solution to name relation
paradox 85-7,88

algebraic semantics 49
definitions for 50-2
notation for 50-2
results using 52-3

algorithms, structure-moving task 209-17
ALG(SIG, E) 50
AL/X expert system shell 188
antinomy, meaning of term, 80n
anti-unification 97
AQ families of inductive algorithms 93,

106, 169, 298
archaeological objects, classification of 165
argument-based model (for plausible

reasoning) 60-3
advantages of 75
compared with probabilistic model 61
implementation examples 68-74

arguments
coherence of 62-3
handling of 61-2
meaning of term 61

Assistant 86 learning system 221, 230
knowledge extracted from data by 232,

234
assumption-based truth maintenance

system 178
use in incremental learning systems

178-9
attributes

effect of typing on 164
types used in CHARADE 162

augmented truth maintenance systems 14
Autolander problem, C4 compared with

Evidencer algorithms 197, 198
axiomatic semantics of specifications 21-3
axiomatic set theory 319

backtracking 173
diagnosis using 272
YAPES's use of 75

backward diagnosis 260, 268, 271-2
cardiac diagnosis using 271-2
compared with,

hierarchical diagnosis 275
naive strategy 275

diagnostic efficiency of 275
right-to-left goal selection strategy used

268, 271
backward pruning of plausibility trees 194,

200
bang—bang control 242
Bayes

naive 189
sequential 187-200

Bayesian inference nets 190
Kononenko's treatment 201-2

Bayesian theory, probabilities defined in
187

beam search, use of 298-9
belief states, compatibility with truth values

at run-time 195
belief updating, mechanism in probabilistic

calculus 56, 58,60
benchmark data-sets, induction of trees

from 196-7
binary logical attributes, domains with, trees

induced from 198
BINEYE program 206, 207, 210, 228, 229
bird example
Closed World Specialization algorithm

used 112
generalization in 105
most-general-correct-specialization

used 111
over-specialization in 107

bisection method 276
blackboard systems 3-4
knowledge systems coupled by 7

block diagrams, knowledge processing 316,
328

Boolean combinations of events, rules used
by PROSPECTOR for 70

boredom, robot's response to 238
break-points, decision tree 128
broadcasting, knowledge systems coupled

by 7
Brookhaven (protein) data base 299, 307

331

INDEX

bubble-sort algorithm
generalization of 142
sample computation using 140

C4 rule-induction algorithm 128, 187
compared with Evidencer algorithm 197
example of output 129
software facilities available 135

calculi
certainty 63-74
coupling of 6-7
ExpertPRIZ 15
knowledge representation by means of

4-6
meaning of term 5
NUT system 13
plausible reasoning 55

calculus of computable functions 4
CAP (Concept Acquisition Program)

179-83
concept description for 181
concurrent running of learning tasks 183
learning strategy summarized 182
liquid pouring example 183
partial match used 179, 180, 181
'tantrum' by 183

cardiac diagnosis 260-1,265-76
rules used 251, 267

CART rule-induction algorithm 187, 188,
197

causality, added to pole-balancing problem
246

certainties
calculation of 72-4
comparison of 58-9
non-numerical system of 71-4
PROSPECTOR-like approach to 69-71

certainty calculus
definitions used 63-4
formal apparatus for 63-7
implementation examples 68-74
inference procedure for 65-7
model theoretic semantics for 65
semantics of 64-7

certainty lattice, use in example 71-2
certainty space, definition of 63-4
characteristic sample set

algorithm to generate 100
meaning of term 99
size of 101

CHARADE system
characteristics of 156
description language used 161-5
exploration of the description space by

159-61, 165-6
functionalities of 156
learning bias hi 161-6

new descriptors added 165
regularities detected by 157-9, 165
representation formalism for 161
rule properties used 159
semantics for generalization heuristics

160
chemical compounds

structure estimation of 328
see also proteins

chemical theory methods, protein structure
predicted using 294

chess positions
encoding of 284, 286
entropy of space of 285-6

patterns stored in memory in relation
to 286-7

guessing of 287-8
experimental results for 288
multi-answer questions used 288
questions allowed 287

information content of 283-8
information required to uniquely

determine 288
pattern recognition of 284
psychological assumptions used 283-4

chess problems
CIGOL's performance in 106
DUCE algorithm used 94-5

chess-specific knowledge
amount remembered by chess master

288
meaning of term 283
number of patterns stored in memory as

measure of 284-5
patterns used 284

Chinese language, number of ideograms in,
288n

chunks (of information)
meaning of term 284
number in short-term memory 284, 286

CIGOL learning system 106, 113, 176
chess problem tackled by 106

classification rule, induction of 121
class probability trees
meaning of term 188
use of sequential Bayes with 187-200

clause entailment, resolution used for 110,
114

clause removal, specialization by 107
Closed World Assumption inference rule

108
closed world specialization 111-13
Closed World Specialization Algorithm,

implementation in PROLOG
112-13

clustering algorithm 234, 235
cluster of objects, description of 182
co2 program 298

332

coated-steel products, interactive induction
used 123-31

coherence, types of 62-3
commongrasp procedure 216
complexity, reduction for pole-balancing

problem 246-8
compound structures, used in KAUS 319,

320
computational models

all variables calculated for 42
applications of 44
calculating programs called from 40, 42,

43
computational rules for 40
example (square') 39, 40-3
implementation in PRIZ 39, 44
implementation in PROLOG 43-4
meaning of term 39-40
meaning of term in PRIZ system 8
particular variables computed for 42
specifications comprising 22-3
use of 42-3
writing of 40-2

concepts
definition of 170
formation in learning systems 170
theory as network of 172, /73

concepts of concepts, formal language for
81,85

conceptual entity network 323
conditionalization, beliefs updated by 56,

58,60
CONFUCIUS system 169
consistency, maintaining in incremental

learning systems 170, 177-9
control rule, pole-balancing problem

253-4
coordinate frame

object-pushing experiment 230-2, 237
choice of coordinate system 231-2

correct-specialization, definition of 109
credit assessment 128

belief-states modified by subsequent
information 195 -

credit assessment problems, C4 compared
with Evidencer algorithms 197, 199

data acquisition, methods used in learning
systems 170

database clauses
meaning of term 261
qualitative models as hierarchy of 261

data bases, integration with knowledge
bases in KAUS 325-6

data structure
as generalized set 319
knowledge representation using 318-19

INDEX

data validation task, interactive induction
133, 134

decidability problem 52-3
decision trees

breakpoints for 128
build-up by Quinlan method 157
coated-steel products case study 126-8
object-pushing experiment, effect of

coordinate frame 232, 233
deductive system, meaning of term 5
deep knowledge, use of 259, 261
deep models, compared with surface

models 264-5
denotation and sense, formal language

based on 81
derivation trees, transformation of

refutation trees into 114-15
'deny' function 108, 114

definition of 114
as explanation-based generalization

technique 116-18
PROLOG implementation of 117-18
use of 114-15

description languages
CHARADE's use of 161-5
generality elaborated using 155

description space, exploration by
CHARADE 159-61,165-6

descriptors, CHARADE's use of 163-4
details (of model), refinement of 266-7,

277
'diagnose' algorithm

cardiac arrhythmias detected by 269-70
equations solved using 276-9

diagnostic task 260
backward reasoning used 260, 268,

271-2, 275
generate-and-test strategy used 260, 275
hierarchy of models used 260, 265-8,

273-4, 275
directed acyclic graph 296
discernment, frame of 56
DISCIPLE system 123
dot operator 114
dots expressions 140-2

folding-up rule for 142
generalization rule for 142
standardization rule for 142

dots strings, unfoldment of 141
dots terms, unfoldment of 141
DUCE algorithm

absorption operator for 94, 97, 176
applications of 94-6
chess problem solved using 94-5
compared with other expert systems 95
completeness of operators for 96,

98-101
description of 93

333

INDEX

DUCE algorithm (cont.)
extensions to first-order representation

96,102
first-order version; see CIGOL
identification operator for 94, 97
interactive induction using 131
intra-construction operator for 93, 98,

176
inversion of resolution in 9718
macro-operators for 101-2
neuro-psychology application 95-6, 131,

134-5
noisy data dealt with by 95, 102, 134-5
operators for 93-4, 175-6
search mechanism for 96, 101-2
supervised compared with unsupervised

mode 95
theory behind 96-102
validation in 133

dynamic control, use of PANIC rules for
239

EARL system 131
validation in 133

electrical circuits, computation of
parameters for 44-7

electrical transformers, diagnosis of
breakdown in 131-2

electrocardiographic (ECG) descriptions
diagnosis based on 260-1, 265-76
P-wave considered 267

electronic circuit analysis, KAUS applied
to 328

elicited knowledge, combined with induced
knowledge 127

engineering design, expert systems used in
311,328

engineering fault diagnosis, C4 compared
with Evidencer algorithms 197, 198

entropy-minimization principle 197, 199
entropy of space

definition of 285
determination of 286
experimental determination of 288
number of chess positions measured

285-6
envisioning 260
equation solving, 'diagnose' algorithm used

276-9
error recovery strategy 177-8
errors

correcting of 174-6
locating of 172-4
recognizing of existence 172

error tolerant learning systems 169-84
Evidencer algorithm

arithmetic in 190

classification tree extracted 194-5
compared with C4 algorithm 197
evidence tree induced 191-2
learning in 189
tree-structured rules used 187

evidence trees
conversion to/from plausibility trees

192-4
induction from benchmark data-sets

196-7
results 198-9

induction of 190-2
set-up of 192-5

exemplar-based learning algorithms 294
expected-weight-of-evidence criterion

190, 197, 199
expenses claims problem, C4 compared

with Evidencer algorithms 197,
199

experimentation
learning by 170

pitfalls of 171
run-out of ingredient 182-3, 184

ExpertPRIZ system 4, 14
calculi of 15

experts, network of 6
expert systems

supervised compared with unsupervised
mode 95

use in engineering 311
see also knowledge processing systems

explanation-based-generalization (EBG)
algorithm

'deny' function as 108, 116-18
improvement on 105, 108

first-order formula, correctness of 108
first-order logic, sentences formalized in

79, 80
Fitch form (for natural deductions) 27
FOR-loops, inductive synthesis 144-5
forward chaining rules, CAP's concept

description as set of 181
Freddy 3 robotics project

goal of 205
hardware implementation of 206, 207,

227, 228
learning by 230-9
software implementation of 206, 207,

227-30
structure-moving task for 208-20

full computation traces, inductive synthesis
from 139

gain ratio adjustment 197, 199-200
GenBank (protein) data base 307

334

generalization
construction of rules by 156-7
description languages used 155
explanation-based 105, 116
formal relations used 152
formulation of 151-2
from general to specific 157
from specific to general 156-7
least general 97, 98
meaning of term 105, 106
operators required 175
protein structure problem 296-7
testing of 179-80

generalization tree 296
generalized regular expressions
examples of 145
inductive synthesis 145-6
interactive synthesis algorithm

constructed for 145-6
generate-and-test problem-solving strategy

260
compared with backward diagnosis 275
compared with hierarchical diagnosis

271, 275
diagnostic efficiency of 275

Gentzen-type sequent version of S4, rules
of 32

global transfer functions 315, 316, 328
GPS planner 225-6
grammars

interactive induction 125-6
refinement of 126

graphical expressions, inductive synthesis
146-7

Graph Traverser program 225-6
grasping positions, examples of 216
greatest common divisor (GCD) algorithm

generalization of 142
sample computation using 140

ground specifications 51

HACKER program 173
heart

abstract model of 265
detailed model of 267-8
more-refined model of 266

Hebrand base 64
Herbrand Universe 64
Heyting—Kolmogorov interpretation 23
hierarchical diagnosis 268-71
compared with,
backward diagnosis 275
naive strategy 271, 275

'diagnose' algorithm used 269-70
diagnostic efficiency of 275
example of use 273-4

INDEX

hierarchical diagnostic algorithms 269-70
bisection method emulated by 276
equations solved using 276-9

hierarchical type
tree representation of 163
use by CHARADE 162, 163

hierarchy of models 265-8
Hilbert's tenth problem 53
hill-climbing beam search 298
homology-based methods, protein structure

predicted using 294
Horn clause logic
argument-based model in 61-3
derivation of new facts in 12
extended to handle uncertainty 63
negation in 62
plausible inference and negation in

55-76
procedural knowledge united with 7-8
propositional 17

Horn clause logic programs, debugging of
106

Horn clause programming 17
human memory, capacity of 284

ID3 algorithm 106, 126, 128, 169
inductive learning by 234
programs similar to 221, 230, 294

identification operator, DUCE's use of 94,
97

ID families of inductive algorithms 93, 106,
126, 128, 169

if—then rules, evaluation of 69-70
imitation, learning by 172, 179-80
incremental learning algorithm, action of

105
incremental learning systems 169

correcting of errors 174-7
locating errors in theory 172-4
maintaining of consistency in 170, 177-9
problems in 171-9
recognizing existence of errors 172

incremental specialization techniques
106-8

independent subtasks
rules of structural synthesis with 31
use in PRIZ 30-5

indirect context, concept first introduced
80

individual concepts and propositions
first-order theories of 79-88
McCarthy's theory of 82-5

INDUCE algorithm 106,156
induced knowledge, combined with elicited

knowledge 127
inductive concept learning, shift of bias for

153

335

_INDEX

inductive formation (of programs and
descriptions) 91-149

inductive learning
logical description extracted from noisy

data by 221,222
plausibility measures for 76
protein structure problem 294, 295
robot control using 227, 234

inductive program synthesis 49
inductive syntactical synthesis

dots expressions used 140-2
FOR-expressions in 144-5
generalizaed regular expressions in

145-6
graphical expressions used 146-7
models of 139-47
program optimization using 147
WHILE-expressions in 143-4

inference algorithms, synthesis
methodology for design of 51

inference procedure
certainty calculus 65-7
implementation examples 68-74

inheritance, calculus of 9-11
interactive induction 121-36

case studies 123-32
coated-steel products case study

123-31
process grammars used 125-6
processing unit selection in 126-31

data validation task in 133, 134
grammars used 125-6
irrelevant attributes suppressed 128
knowledge acquisitiion in 122, 124, 130
knowledge engineering aspects 132-5
man—machine interaction in 134
neuro-psychology case study 95-131,

134-5
problem formulation task in 133, 134
rule presentation task in 133-4
software facilities for 135
transformer diagnosis case study 131-2
validation in 132-3, 134

interpret procedure 215-16
interrupt-revision 189, 195
interview-driven knowledge acquisition

methods 122
disadvantages of 122,124

intra-construction operator, DUCE's use
of 93, 98, 176

intuitionistic propositional calculus (IPC)
4,8

depth reduction in 25-6
disjunction eliminated in 26
negation and disjunction eliminated in

26
procedural kno,wledge united with 8-9,

17,21

KARDIO expert system 260-1
backward diagnosis used 271-2, 273-4,

275
experiments for ECG diagnosis 273
hierarchical diagnosis used 268-71, 275
naive (generate-and-test) strategy used

275
KAUS (Knowledge Acquisition and

Utilization System) 312, 318-28
applications of 326, 328
data bases integrated with knowledge

bases in 325-6
existing programs used by 324-5
integration of resources in 323-6
Multi-Layer Logic used 321-2
object model used 323, 324
set-constructors used 319
structures allowed in 319
user interfaces in 326, 327

Kedar-Cabelli—McCarty explanation-based-
generalization algorithm 108

Kleene realizability 23
knowledge

modularity of 3-15
qualitative representations of 203-79
stratification of 14

knowledge acquisition
applications and models of 281-328
factors affecting validation method used

132-3, 134
inductive learning used 76
interactive induction system 122, 124,

130
knowledge-base bootstrapping 125, 136

user interface for 126
knowledge bases, integration with data

bases in KAUS 325-6
knowledge processing, mechanics of

1-89
knowledge processing systems

design of 311-28
enhancement of problem-solving

capability 314-17
formalization of problem-solving

process 312-14
KAUS system described 318-28
knowledge representation in 317
management of 317-18
see also expert systems

knowledge representation 312, 317
formal calculi as means of 4-6
in probabilistic calculus 57-9
requirements for 317

knowledge representation language, PRIZ
input using 9-10

knowledge structure, entity relations
comprising 323

Kononenko's Bayesian nets 201-2

336

Laplace's Law of Succession 192
lattice
examples of use 70-2
meaning of term 62

learning bias
derivation from rule properties 151-66
meaning of term 153
modification of 153
nature of 154-5
phenomenological approach to 154
role of 153-4

learning set, regularities looked-for in
157-8

learning systems
error-tolerant 169-84
optimality and error in 149-201
robot control using 226-7
types of 169

least general generalization, concept of 97
light pen, use in inductive synthesis 147
liquid-pouring example
CAP used in 179-83
errors introduced by over-generalization

171-2
local transfer functions 315, 316
logic, procedural knowledge united with

7-9
logical attributes, domains with, trees

induced from 198, 199
logic-based representation

separation from numerical representation
221

transformation to numerical
representation 221, 222

• logic programming
meaning of term 17
propositional logic used 17-36

long-term memory
capacity of 284
number of patterns stored in,

as measure of chess-specific
knowledge 284-5

relation to entropy of space of chess
positions 286-7

lookinto operator 209, 212-13

McCarthy's first-order theory of individual
concepts 82-5

concept objects represented in 82
definitions 82-4
examples 82-5
real-world objects represented in 82

macro-operators
DUCE's use of 101-2
effect of 102

man-machine interaction, interactive
induction 134

INDEX

Marvin system 169, 176
MARVIN system, validation in 133
Mason's Gain Rule 315
Mathematica system 196
measurement errors, effect in

structure-moving tasks 220
memory, human, capacity of 284
meta-interpreter, use in PROLOG 43-4
metalanguage, PRIZ system 9-10
meta-level knowledge 318
metatheories, use of 11-13
minimax problem, PRIZ's solution of 23-5
mirror crafting example, learning in 183,

184
MIS program 173, 174, 175
mistake matching rules, protein structure

problem 306
MLL (Multi-Layer Logic) 321
examples of 321
inference of 322-3

modal logic S4 17, 30-5
derivability in 32-4

model-based interpretation 205-23
model-building sub-process 313
MODELER program 107
model generation

learning procedure used 234
object-pushing experiment 232-6

model refinement, incremental process of
313, 314

modularity of knowledge 3-15
most-general-correct-specialization

(MGCS)
definition of 109
resolution-based method for construction

of 110-11
most-general-unifier (MGU) 115
motivation, robot experiment 238
multiple evidence, combined by

PROSPECTOR 70
multi-valued logical attributes, domains

with, trees induced from 198
MYCIN expert system 55

naive Bayes 189
naive Bayes classifier 201
naive strategy; see generate-and-test

problem-solving strategy
name relation paradox 80

Ajdukiewicz's solution to 85-7, 88
Church's formalization of solution to 85,

86
Frege's solution 80-1
McCarthy's solution 82-5

negation, semantics for 62 •
negation by failure 108, I 1 1
neural net learning 188

337

INDEX

neural networks, protein structure predicted
using 294

neuro-psychology application, DUCE
algorithm used 95-6, 131, 134-5

NEWGEM, rule evaluation function in
298

noise
errors caused by 177, 178
multivariate domains with, tree induced

from 199
Noiseless Coding Theorem 286
noisy data
DUCE algorithm adapted to deal with

95, 102
extraction of logical description from

221, 222
NONLIN planner 225-6
non-monotonic formalisms 108
over-specialization avoided by 111-13

non-monotonic learning 105-18
NTC (New Term Constructor) program

294
numerical representation

separation from logic-based
representation 221

transformation to logic-based
representation 221, 222

numeric attributes, domains with, trees
induced from 198-9

NUT system 4, 12
calculi of 13

object models, KAUS's use of 323, 324
object-oriented coordinate frame 232

decision tree for 232, 233
object-oriented programming, knowledge

systems coupled by 6
object-pushing experiment

coordinate frames used 230-2, 237
generation of model in 232-6
method used 228-30

Occam's Razor 232
oracle, expert acting as 130, 133, 135
ordered type, use by CHARADE 162-3
outliers, flagging in induction system 134
over-generalization, errors induced by

171-2

PANIC (Perception and Action as Naive
Causality) model 235

dynamic control using 239
graphical representation of 236
knowledge hierarchy levels of 237

partial match, learning situation 179, 180,
181

partial theory, behefits of constructing 170

partitionable, meaning of term 192
partitionworthy, meaning of term 192
passive observation, data acquired by 170
pattern matching
chess positions 284
protein structure problem 306

'person', knowledge representation for
11-12

pickup operator 209, 211, 212
PIR (protein) data base 307
place operator 209, 212
planners, robot control by 225-6
plausibility-based systems, weights of

evidence in 188
plausibility coefficients 158
plausibility-gain trees; see evidence trees
plausibility trees
backward pruning of 194, 200
conversion to/from evidence trees

192-4
plausible reasoning

alternative approaches 56-7, 60-3
argument-based model of 60-3
calculi used 55
complexity issues 59-63
implementation examples 68-74
knowledge representation issues 57-9
probabilistic model of 55-6
related approaches 63

PLS1 program 294
pointer stack 10
pole-balancing problem
choice of means of control 248-50
complexity reduced 246-8
credit assignment algorithm used 226
described 241-3
qualitative model used 248-9, 251-2,

253-4, 257
system parameters chosen 254-7, 258

qualitative way of solving 241-58
verification of solution 245-6

pole—cart system
angles of posts controlled 249-50
approximations used 247-8
cart controlled whilst balancing poles

250-1
choosing means of control 248-50
control of 251-4

cart while balancing poles 250-1
chain of integrators 252, 253
effect of delay 255, 256
one integrator 252, 253
total system 251-4

control rule for 253-4
described 242
division of quantity space for 253
dominant path of control for 250, 256,

257

338

drift behaviour modelled 251, 252
effects of,

changing length or mass of poles 258
control parameters on system

properties 256-7
forces acting on 244
hypothesis about operating region for

247
measurements required 242
modelling of 243-5
oscillation in 255-6
positive feedback loops in 249
qualitative model of controlled

integrator 255-6
relevant properties of 243
semi-qualitative model of 248-9, 251-2
system parameters chosen 254-7

trial-and-error method used 255
Pop-2 memo function 196
predicate logic
knowledge representation using 318-19
set concept of 320-2

pressure regulator model
qualitative state of 263
rules for 265
single-level representation of 260, 262-5
structure of 262

prior knowledge, use in induction systems
124, 134, 135

priors, problems with 57
PRIZ system

applications of 44
architecture of 18-19
compared with PROLOG 18
direct specifier for 9
example problem solved by 21, 36
independent subtasks used 30-5
inheritance specifier for 10
input language used 19-21
knowledge base in 19
knowledge representation in 8, 9
logic united with procedural knowledge

in 8-9
metalanguage used 9-10.
preprocessor used 25-6
presentation of natural deductions from

26-7
program derivation rules for 35-6
program synthesis in 17, 18, 19, 23-5
structural synthesis rules for 31
use of program synthesizer as theorem

prover 25-30
probabilistic calculus, language limitations

in 58
probabilistic model (for plausible

reasoning) 55-6
alternatives to 56-7, 60-3
complexity issues 59-60

INDEX

knowledge representation issues 57-9
objections to 60

problem formulation task, interactive
induction 133, 134

problem-solving capability, enhancement
of 314-17

problem-solving process
example of 316
formalization of 312-14

procedural knowledge, logic united with
7-9

procedural type atoms, use in KAUS
324-5

PRODIGY general-purpose planner
183-4

Program Debugging System 106-7
program optimization, inductive synthesis

applied to 147
program synthesis, PRIZ's use of 17, 18,

19, 23-5
PROLOG

cardiac diagnostic algorithm written in
269-70

Closed World Specialization Algorithm
implemented in 112-13

compared with PRIZ 18
computational models in 39-47
debugging of programs 171, 172-3
'deny' function implemented in 117-18
Edinburgh syntax conventions of 214
extension of 15,43
interpreters 68
SLDC trees found by 67

logic united with procedural knowledge
in 7-8

meta-interpreter used 43-4
negation-by-failure used 108, 111
robot programming using 206, 227
StructureMover program implemented

in 213-15
PROMIS (protein machine induction

system) program 291,292
alpha-helix prediction rule 301-3
chemical knowledge coded into 301
experimental results 299-307

data used 299
general rules for predicting secondary

structure 299-303
threshold logic used 305-7
variation of successful rules 303-5

input to 295
learning by 296
operators used 297
output of 295
rule evaluation by 297-8
search control in 298-9
threshold test used 298

prompting, interactive induction 127

339

INDEX

propositional Horn clause logic 17
program using, characteristic sample set

generated for 99, 100
see also PRIZ

propositional logic programming 17-36
propositional variables, PRIZ's use of 10,

21-2
proposition surrogates
concept first introduced 85, 88
example of use 86-7
first member of 86, 87

PROSPECTOR expert system 55, 59
Bayesian inference used in 187-8
Boolean combinations of events treated

by 70
combination of multiple evidence treated

in 70
if—then rules used 69-70
plausible reasoning mechanism used by

69-71
probabilistic inference mechanism of

69-71
implementation of 70-1

protein folding
learning applied to prediction of

291-308
problem to be solved 292-3

proteins
alpha-helix secondary structure

prediction 301-3
data bases of structure information 293,

307
primary structure of 292
secondary structure of 292
secondary structure prediction 292, 293,

294-308
chemical theory methods used 294
general rules found 299-303
homology-based methods used 294
statistical methods used 294
threshold logic used 305-7
variation of successful rules 303-5

types of 292
protein structure problem
alpha-helix prediction rule 301-3
mistake matching used 306
previous work done 294
suitability of problem 293

proximity scanning technique 209, 210
proximityscan operator 209, 212
P-space-complete problems 8, 17, 30
Puma robots 206, 207, 227, 228

QSIM qualitative simulator 241
qualitative modelling, varying levels of

abstraction in 259-79

qualitative models
experimental results using 273-6
interpretation of 268-72
representation as hierarchy of models

265-8
representation of 261-8
research on machine-aided construction

of 279
single-level 262-5

qualitative representations (of knowledge)
203-79

quantity space, division for pole-balancing
problem 253

Quinlan method, decision trees built-up by
157

reactive environment
learning in 170-84
meaning of term 169,179

recursive programs, construction in PRIZ
17

refinement operator 175
refutation trees, transformation into

derivation trees 114-15
regularities, detection by CHARADE

157-9, 165
resolution

clause entailment using 110, 114
unification within theory 97

resolution closure, definition of 109
resolution principle, inversion of 93-102
resolution theorem, Robinson's results on,

109
Rhino robot 207
right-to-left goal selection strategy 268,

271
ROBCON program 206, 207, 227, 229
ROBEYE program 206, 207, 227, 229
robotics, definition of 205
robot learning, CAP used 179-83
robot programs, two-phase approach to

building 227
robots

learning of causality by 225-41
coordinate frame 230-2, 237
experimental method 227-30
model generation 232-6

response to change 238
structure moving by 208-20
user-interaction facility for 221-3

ROPRO system 226
rule evaluation, protein structure problem

297-8
RULEGEN, threshold test in 298
rule induction, table compression using

198

340

RuleMaster inductive learning system 206,
207

rule presentation task, interactive
induction 133-4

rule properties, learning bias affected by
159-60

rules
expert's modification of 129-30, 134
flexible interpretation of 306
protein structure problem 295

rule system
a priori structure of 160
learning with 153, 156-61

run-time
compatibilities between belief-states and

truth-values encountered at 195
learning occurring at 195-64

Russell's paradox 319

S4 modal logic 17, 30-5
derivability in 32-4

safegrasp procedure 216-17
sample computations

direct screen display of 146-7
general algorithms restored from 140,

142
WHILE-expressions constructed from

144
scientific discovery, application of machine

learning to 291-2
search control, PROMIS's use of 298-9
search mechanism, DUCE's use of 101-2
search operators, background knowledge on

proteins used as 296-7
semantic networks 5-6

inference on 6
time-relations in 5

'sem' function, definition of 11, 22-3
semi-decision trees 190, 196

conversion from plausibility trees 194
sense and denotation, formal language

based on 81
sense of name, meaning of term, 80n
sensory information, robot control using

207, 226
sequential Bayes, used with class probability

trees 187-200
SEQUOIA, threshold test in 298
Shapiro-Kopec expert system 94, 95
Shapiro's debugging algorithm 172-3,

174
short-term memory, capacity of 284
signal flow graphs 315, 316, 328
silhouette identification, C4 compared with

Evidencer algorithms 197, 198-9
single-concept learning systems 169
skolemization 114, 117

INDEX

SLDC tree
definition of 66
index of 66-7
PROLOG interpreter to find 67
see also certainty calculus

software facilities, induction tools 135
specialization

closed world 111-13
meaning of term 106
operators required 175
protein structure problem 297

specification languages; see also
UTOPIST...

specifications, axiomatic semantics of 21-3
'square' (computational) model 39

calculating programs called from 43
encoding of 41
implementation in PROLOG 43-4
use of 42-3
writing of 40

statistical methods, protein structure
predicted using 294

stratification of knowledge 14
STRIPS planner 225-6
Structural Synthesis Rules (in PRIZ) 23, 35

with independent subtasks 31
structured induction technique 188
StructureMover program 207

algorithms in 209-17
combinatorial complexity problems 215,

219
commongrasp procedure 216
constraints with respect to structures

219
extensions possible 220-1
interpret procedure 215-16
limitations due to inaccuracy in

measurements 220
limitations with respect to grippers 220
performance and limitations of 217-21
PROLOG implementation of 213-15
safegrasp procedure 216-17

structure-moving task 208-9
algorithms used 209-17
lookinto operator for 209, 212-13
pickup operator for 209, 211, 212
place operator for 209,212
proximityscan operator for 209, 212

structures, exploring of 205-23
subcommittees model 195-6
subjective information

meaning of term 122
methods of providing 122, 124

subsumption theorem 113
Subtasks, dependent compared with

independent 30
suicide example 118
superstable structure, meaning of term 215

341

INDEX

supervision, expert system performance
affected by 95

surface models, compared with deep
models 264-5

symbol reduction, DUCE operators giving
94

'tantrum' (by learning system) 183
term rewriting system 51
theorem prover
PRIZ's program synthesizer used as

25-30
examples 27-30

theory
learning systems,

correcting errors in 174-7
definition of 170
locating errors in 172-4
maintaining consistency in 170, 177-9
recognizing existence of errors 172

as network of concepts 172, 173
theta-subsumption 110
threshold logic, use in protein structure

problem 305
threshold test 298
translation (of formulas and sequents) 31

travelling expenses claims
certainty lattice used 72
home/abroad distinction 72, 73, 74
user interface strategy 74

truth maintenance systems 14, 58,63
truth values, compatibility with belief states

at run-time 195
typing, attributes affected by 164

uncertain inference, PROSPECTOR's
support of 189

unification 97
unifying terms, construction of 49-53
user interfaces

expert system 74
KAUS 326, 327

knowledge-base bootstrapping 126
UTOPIST (Universal Translator Of

Problems Including Specifying Texts)
input language 18,19

example specifications in 19-21
semantics of 21-2

validation, induced knowledge 132-3, 134
VAL II robot programming language 206

Variable Precision Logic 273
Version Space algorithm 106
voting patterns, C4 compared with

Evidencer algorithms 197, 199

Wald sequential cut-off method 187, 200
Wang's algorithm 72
WARPLAN 220
weight of evidence

updating using 70 '
see also plausibility gain

WHILE-expressions, inductive synthesis
143-4

window-oriented coordinate frame 232
decision tree for 232, 233

world model
errors in,

correcting errors 174-7
locating errors 172-4
recognizing existence of errors 172

evolution over time 170
maintaining consistency in 170, 177-9

XpertRule, induction of evidence trees
implemented by 196-7

YAPES expert system shell 71, 74,75
user interface strategy 74

Zermelo—Fraenkel set theory 319

342

