Model-Based Reasoning
Unit Dependency Graph and Its Application to Arithmetic Word Problem Solving
Roy, Subhro (University of Illinois, Urbana Champaign) | Roth, Dan (University of Illinois, Urbana Champaign)
Math word problems provide a natural abstraction to a range of natural language understanding problems that involve reasoning about quantities, such as interpreting election results, news about casualties, and the financial section of a newspaper. Units associated with the quantities often provide information that is essential to support this reasoning. This paper proposes a principled way to capture and reason about units and shows how it can benefit an arithmetic word problem solver. This paper presents the concept of Unit Dependency Graphs (UDGs), which provides a compact representation of the dependencies between units of numbers mentioned in a given problem. Inducing the UDG alleviates the brittleness of the unit extraction system and allows for a natural way to leverage domain knowledge about unit compatibility, for word problem solving. We introduce a decomposed model for inducing UDGs with minimal additional annotations, and use it to augment the expressions used in the arithmetic word problem solver of (Roy and Roth 2015) via a constrained inference framework. We show that introduction of UDGs reduces the error of the solver by over 10 %, surpassing all existing systems for solving arithmetic word problems. In addition, it also makes the system more robust to adaptation to new vocabulary and equation forms .
Unit Dependency Graph and Its Application to Arithmetic Word Problem Solving
Roy, Subhro (University of Illinois, Urbana Champaign) | Roth, Dan (University of Illinois, Urbana Champaign)
Math word problems provide a natural abstraction to a range of natural language understanding problems that involve reasoning about quantities, such as interpreting election results, news about casualties, and the financial section of a newspaper. Units associated with the quantities often provide information that is essential to support this reasoning. This paper proposes a principled way to capture and reason about units and shows how it can benefit an arithmetic word problem solver. This paper presents the concept of Unit Dependency Graphs (UDGs), which provides a compact representation of the dependencies between units of numbers mentioned in a given problem. Inducing the UDG alleviates the brittleness of the unit extraction system and allows for a natural way to leverage domain knowledge about unit compatibility, for word problem solving. We introduce a decomposed model for inducing UDGs with minimal additional annotations, and use it to augment the expressions used in the arithmetic word problem solver of (Roy and Roth 2015) via a constrained inference framework. We show that introduction of UDGs reduces the error of the solver by over 10 %, surpassing all existing systems for solving arithmetic word problems. In addition, it also makes the system more robust to adaptation to new vocabulary and equation forms .
Mechanism Design in Social Networks
Li, Bin (University of Electronic Science and Technology of China) | Hao, Dong (University of Electronic Science and Technology of China) | Zhao, Dengji (ShanghaiTech University) | Zhou, Tao (University of Electronic Science and Technology of China)
This paper studies an auction design problem for a seller to sell a commodity in a social network, where each individual (the seller or a buyer) can only communicate with her neighbors. The challenge to the seller is to design a mechanism to incentivize the buyers, who are aware of the auction, to further propagate the information to their neighbors so that more buyers will participate in the auction and hence, the seller will be able to make a higher revenue. We propose a novel auction mechanism, called information diffusion mechanism (IDM), which incentivizes the buyers to not only truthfully report their valuations on the commodity to the seller, but also further propagate the auction information to all their neighbors. In comparison, the direct extension of the well-known Vickrey-Clarke-Groves (VCG) mechanism in social networks can also incentivize the information diffusion, but it will decrease the seller's revenue or even lead to a deficit sometimes. The formalization of the problem has not yet been addressed in the literature of mechanism design and our solution is very significant in the presence of large-scale online social networks.
Sample Complexity of Automated Mechanism Design
Balcan, Maria-Florina F., Sandholm, Tuomas, Vitercik, Ellen
The design of revenue-maximizing combinatorial auctions, i.e. multi item auctions over bundles of goods, is one of the most fundamental problems in computational economics, unsolved even for two bidders and two items for sale. In the traditional economic models, it is assumed that the bidders' valuations are drawn from an underlying distribution and that the auction designer has perfect knowledge of this distribution. Despite this strong and oftentimes unrealistic assumption, it is remarkable that the revenue-maximizing combinatorial auction remains unknown. In recent years, automated mechanism design has emerged as one of the most practical and promising approaches to designing high-revenue combinatorial auctions. The most scalable automated mechanism design algorithms take as input samples from the bidders' valuation distribution and then search for a high-revenue auction in a rich auction class. In this work, we provide the first sample complexity analysis for the standard hierarchy of deterministic combinatorial auction classes used in automated mechanism design. In particular, we provide tight sample complexity bounds on the number of samples needed to guarantee that the empirical revenue of the designed mechanism on the samples is close to its expected revenue on the underlying, unknown distribution over bidder valuations, for each of the auction classes in the hierarchy. In addition to helping set automated mechanism design on firm foundations, our results also push the boundaries of learning theory. In particular, the hypothesis functions used in our contexts are defined through multi stage combinatorial optimization procedures, rather than simple decision boundaries, as are common in machine learning.
Causal Network Learning from Multiple Interventions of Unknown Manipulated Targets
In this paper, we discuss structure learning of causal networks from multiple data sets obtained by external intervention experiments where we do not know what variables are manipulated. For example, the conditions in these experiments are changed by changing temperature or using drugs, but we do not know what target variables are manipulated by the external interventions. From such data sets, the structure learning becomes more difficult. For this case, we first discuss the identifiability of causal structures. Next we present a graph-merging method for learning causal networks for the case that the sample sizes are large for these interventions. Then for the case that the sample sizes of these interventions are relatively small, we propose a data-pooling method for learning causal networks in which we pool all data sets of these interventions together for the learning. Further we propose a re-sampling approach to evaluate the edges of the causal network learned by the data-pooling method. Finally we illustrate the proposed learning methods by simulations.
Policy Error Bounds for Model-Based Reinforcement Learning with Factored Linear Models
Pires, Bernardo Ávila, Szepesvári, Csaba
In this paper we study a model-based approach to calculating approximately optimal policies in Markovian Decision Processes. In particular, we derive novel bounds on the loss of using a policy derived from a factored linear model, a class of models which generalize numerous previous models out of those that come with strong computational guarantees. For the first time in the literature, we derive performance bounds for model-based techniques where the model inaccuracy is measured in weighted norms. Moreover, our bounds show a decreased sensitivity to the discount factor and, unlike similar bounds derived for other approaches, they are insensitive to measure mismatch. Similarly to previous works, our proofs are also based on contraction arguments, but with the main differences that we use carefully constructed norms building on Banach lattices, and the contraction property is only assumed for operators acting on "compressed" spaces, thus weakening previous assumptions, while strengthening previous results.
This nasty ransomware overwrites your PC's master boot record
It's hard enough for non-technical users to deal with ransomware infections: understanding public-key cryptography, connecting to the Tor anonymity network and paying with Bitcoin cryptocurrency. A new malicious program now makes it even more difficult by completely locking victims out of their computers. The new Petya ransomware overwrites the master boot record (MBR) of the affected PCs, leaving their operating systems in an unbootable state, researchers from antivirus firm Trend Micro said in a blog post. The MBR is the code stored in the first sectors of a hard disk drive. It contains information about the disk's partitions and launches the operating system's boot loader.
Petya ransomware overwrites MBRs, locking users out of their computers
It's hard enough for non-technical users to deal with ransomware infections: understanding public-key cryptography, connecting to the Tor anonymity network and paying with Bitcoin cryptocurrency. A new malicious program now makes it even more difficult by completely locking victims out of their computers. The new Petya ransomware overwrites the master boot record (MBR) of the affected PCs, leaving their operating systems in an unbootable state, researchers from antivirus firm Trend Micro said in a blog post. The MBR is the code stored in the first sectors of a hard disk drive. It contains information about the disk's partitions and launches the operating system's boot loader.
Formalizing Preference Utilitarianism in Physical World Models
Most ethical work is done at a low level of formality. This makes practical moral questions inaccessible to formal and natural sciences and can lead to misunderstandings in ethical discussion. In this paper, we use Bayesian inference to introduce a formalization of preference utilitarianism in physical world models, specifically cellular automata. Even though our formalization is not immediately applicable, it is a first step in providing ethics and ultimately the question of how to "make the world better" with a formal basis.