Model-Based Reasoning
A model learning framework for inferring the dynamics of transmission rate depending on exogenous variables for epidemic forecasts
Ziarelli, Giovanni, Pagani, Stefano, Parolini, Nicola, Regazzoni, Francesco, Verani, Marco
In this work, we aim to formalize a novel scientific machine learning framework to reconstruct the hidden dynamics of the transmission rate, whose inaccurate extrapolation can significantly impair the quality of the epidemic forecasts, by incorporating the influence of exogenous variables (such as environmental conditions and strain-specific characteristics). We propose an hybrid model that blends a data-driven layer with a physics-based one. The data-driven layer is based on a neural ordinary differential equation that learns the dynamics of the transmission rate, conditioned on the meteorological data and wave-specific latent parameters. The physics-based layer, instead, consists of a standard SEIR compartmental model, wherein the transmission rate represents an input. The learning strategy follows an end-to-end approach: the loss function quantifies the mismatch between the actual numbers of infections and its numerical prediction obtained from the SEIR model incorporating as an input the transmission rate predicted by the neural ordinary differential equation. We validate this original approach using both a synthetic test case and a realistic test case based on meteorological data (temperature and humidity) and influenza data from Italy between 2010 and 2020. In both scenarios, we achieve low generalization error on the test set and observe strong alignment between the reconstructed model and established findings on the influence of meteorological factors on epidemic spread. Finally, we implement a data assimilation strategy to adapt the neural equation to the specific characteristics of an epidemic wave under investigation, and we conduct sensitivity tests on the network hyperparameters.
Analysis of Variance of Multiple Causal Networks
Constructing a directed cyclic graph (DCG) is challenged by both algorithmic difficulty and computational burden. Comparing multiple DCGs is even more difficult, compounded by the need to identify dynamic causalities across graphs. We propose to unify multiple DCGs with a single structural model and develop a limited-information-based method to simultaneously construct multiple networks and infer their disparities, which can be visualized by appropriate correspondence analysis. The algorithm provides DCGs with robust non-asymptotic theoretical properties. It is designed with two sequential stages, each of which involves parallel computation tasks that are scalable to the network complexity.
PDEBench: An Extensive Benchmark for Scientific Machine Learning
Machine learning-based modeling of physical systems has experienced increased interest in recent years. Despite some impressive progress, there is still a lack of benchmarks for Scientific ML that are easy to use but still challenging and repre- sentative of a wide range of problems. We introduce PDEBENCH, a benchmark suite of time-dependent simulation tasks based on Partial Differential Equations (PDEs). PDEBENCH comprises both code and data to benchmark the performance of novel machine learning models against both classical numerical simulations and machine learning baselines. Our proposed set of benchmark problems con- tribute the following unique features: (1) A much wider range of PDEs compared to existing benchmarks, ranging from relatively common examples to more real- istic and difficult problems; (2) much larger ready-to-use datasets compared to prior work, comprising multiple simulation runs across a larger number of ini- tial and boundary conditions and PDE parameters; (3) more extensible source codes with user-friendly APIs for data generation and baseline results with popular machine learning models (FNO, U-Net, PINN, Gradient-Based Inverse Method).
On the Robustness of Mechanism Design under Total Variation Distance
We study the problem of designing mechanisms when agents' valuation functions are drawn from unknown and correlated prior distributions. In particular, we are given a prior distribution D, and we are interested in designing a (truthful) mechanism that has good performance for all "true distributions" that are close to D in Total Variation (TV) distance. We show that DSIC and BIC mechanisms in this setting are strongly robust with respect to TV distance, for any bounded objective function \mathcal{O}, extending a recent result of Brustle et al. ([BCD20], EC 2020). At the heart of our result is a fundamental duality property of total variation distance. As direct applications of our result, we (i) demonstrate how to find approximately revenue-optimal and approximately BIC mechanisms for weakly dependent prior distributions; (ii) show how to find correlation-robust mechanisms when only noisy'' versions of marginals are accessible, extending recent results of Bei et.
Causal Effect Identification in Uncertain Causal Networks
Causal identification is at the core of the causal inference literature, where complete algorithms have been proposed to identify causal queries of interest. The validity of these algorithms hinges on the restrictive assumption of having access to a correctly specified causal structure. In this work, we study the setting where a probabilistic model of the causal structure is available. Specifically, the edges in a causal graph exist with uncertainties which may, for example, represent degree of belief from domain experts. Alternatively, the uncertainty about an edge may reflect the confidence of a particular statistical test. The question that naturally arises in this setting is: Given such a probabilistic graph and a specific causal effect of interest, what is the subgraph which has the highest plausibility and for which the causal effect is identifiable?
Avoiding Discrimination through Causal Reasoning
Recent work on fairness in machine learning has focused on various statistical discrimination criteria and how they trade off. Most of these criteria are observational: They depend only on the joint distribution of predictor, protected attribute, features, and outcome. While convenient to work with, observational criteria have severe inherent limitations that prevent them from resolving matters of fairness conclusively. Going beyond observational criteria, we frame the problem of discrimination based on protected attributes in the language of causal reasoning. This viewpoint shifts attention from "What is the right fairness criterion?" to "What do we want to assume about our model of the causal data generating process?"
Inference Aided Reinforcement Learning for Incentive Mechanism Design in Crowdsourcing
Incentive mechanisms for crowdsourcing are designed to incentivize financially self-interested workers to generate and report high-quality labels. Existing mechanisms are often developed as one-shot static solutions, assuming a certain level of knowledge about worker models (expertise levels, costs for exerting efforts, etc.). In this paper, we propose a novel inference aided reinforcement mechanism that acquires data sequentially and requires no such prior assumptions. Specifically, we first design a Gibbs sampling augmented Bayesian inference algorithm to estimate workers' labeling strategies from the collected labels at each step. Then we propose a reinforcement incentive learning (RIL) method, building on top of the above estimates, to uncover how workers respond to different payments.
Sample-Efficient Reinforcement Learning with Stochastic Ensemble Value Expansion
There is growing interest in combining model-free and model-based approaches in reinforcement learning with the goal of achieving the high performance of model-free algorithms with low sample complexity. This is difficult because an imperfect dynamics model can degrade the performance of the learning algorithm, and in sufficiently complex environments, the dynamics model will always be imperfect. As a result, a key challenge is to combine model-based approaches with model-free learning in such a way that errors in the model do not degrade performance. We propose stochastic ensemble value expansion (STEVE), a novel model-based technique that addresses this issue. By dynamically interpolating between model rollouts of various horizon lengths, STEVE ensures that the model is only utilized when doing so does not introduce significant errors.
Reviews: Avoiding Discrimination through Causal Reasoning
This paper formulates fairness for protected attributes as a causal inference problem. It is a well-written paper that makes an important connection that discrimination, in itself, is a causal concept that can benefit from using causal inference explicitly. The major technical contribution of the paper is to show a method using causal graphical models for ensuring fairness in a predictive model. In line with social science research on discrimination, they steer away from thinking about a gender or race counterfactual which can be an unwieldy or even absurd counterfactual to construct---what would happen if someone's race is changed---and instead focus on using proxy variables and controlling causal pathways from proxy variables to an outcome. This is an important distinction, and allows us to declare proxy variables such as home location or name and use them for minimizing discrimination.
Avoiding Discrimination through Causal Reasoning
Niki Kilbertus, Mateo Rojas Carulla, Giambattista Parascandolo, Moritz Hardt, Dominik Janzing, Bernhard Schölkopf
Recent work on fairness in machine learning has focused on various statistical discrimination criteria and how they trade off. Most of these criteria are observational: They depend only on the joint distribution of predictor, protected attribute, features, and outcome. While convenient to work with, observational criteria have severe inherent limitations that prevent them from resolving matters of fairness conclusively. Going beyond observational criteria, we frame the problem of discrimination based on protected attributes in the language of causal reasoning. This viewpoint shifts attention from "What is the right fairness criterion?" to "What do we want to assume about our model of the causal data generating process?" Through the lens of causality, we make several contributions. First, we crisply articulate why and when observational criteria fail, thus formalizing what was before a matter of opinion. Second, our approach exposes previously ignored subtleties and why they are fundamental to the problem. Finally, we put forward natural causal non-discrimination criteria and develop algorithms that satisfy them.