Inference Aided Reinforcement Learning for Incentive Mechanism Design in Crowdsourcing

Neural Information Processing Systems 

Incentive mechanisms for crowdsourcing are designed to incentivize financially self-interested workers to generate and report high-quality labels. Existing mechanisms are often developed as one-shot static solutions, assuming a certain level of knowledge about worker models (expertise levels, costs for exerting efforts, etc.). In this paper, we propose a novel inference aided reinforcement mechanism that acquires data sequentially and requires no such prior assumptions. Specifically, we first design a Gibbs sampling augmented Bayesian inference algorithm to estimate workers' labeling strategies from the collected labels at each step. Then we propose a reinforcement incentive learning (RIL) method, building on top of the above estimates, to uncover how workers respond to different payments.