Metareasoning


Metareasoning

AITopics Original Links

The capacity to think about our own thinking may lie at the heart of what it means to be both human and intelligent. Philosophers and cognitive scientists have investigated these matters for many years. Researchers in artificial intelligence have gone further, attempting to implement actual machines that mimic, simulate, and perhaps even replicate this capacity, called metareasoning. In this volume, leading authorities offer a variety of perspectives--drawn from philosophy, cognitive psychology, and computer science--on reasoning about the reasoning process. The book offers a simple model of reasoning about reason as a framework for its discussions.


Metareasoning for Planning Under Uncertainty

AAAI Conferences

The conventional model for online planning under uncertainty assumes that an agent can stop and plan without incurring costs for the time spent planning. However, planning time is not free in most real-world settings. For example, an autonomous drone is subject to nature's forces, like gravity, even while it thinks, and must either pay a price for counteracting these forces to stay in place, or grapple with the state change caused by acquiescing to them. Policy optimization in these settings requires metareasoning---a process that trades off the cost of planning and the potential policy improvement that can be achieved. We formalize and analyze the metareasoning problem for Markov Decision Processes (MDPs). Our work subsumes previously studied special cases of metareasoning and shows that in the general case, metareasoning is at most polynomially harder than solving MDPs with any given algorithm that disregards the cost of thinking. For reasons we discuss, optimal general metareasoning turns out to be impractical, motivating approximations. We present approximate metareasoning procedures which rely on special properties of the BRTDP planning algorithm and explore the effectiveness of our methods on a variety of problems.


A Review of Recent Research in Metareasoning and Metalearning

AI Magazine

Recent years have seen a resurgence of interest in the use of metacognition in intelligent systems. This article is part of a small section meant to give interested researchers an overview and sampling of the kinds of work currently being pursued in this broad area. The current article offers a review of recent research in two main topic areas: the monitoring and control of reasoning (metareasoning) and the monitoring and control of learning (metalearning).