Goto

Collaborating Authors

Metareasoning


Cserna

AAAI Conferences

When minimizing makespan during off-line planning, the fastest action sequence to reach a particular state is, by definition, preferred. When trying to reach a goal quickly in on-line planning, previous work has inherited that assumption: the faster of two paths that both reach the same state is usually considered to dominate the slower one. In this short paper, we point out that, when planning happens concurrently with execution, selecting a slower action can allow additional time for planning, leading to better plans. We present Slo'RTS, a metareasoning planning algorithm that estimates whether the expected improvement in future decision-making from this increased planning time is enough to make up for the increased duration of the selected action. Using simple benchmarks, we show that Slo'RTS can yield shorter time-to-goal than a conventional planner. This generalizes previous work on metareasoning in on-line planning and highlights the inherent uncertainty present in an on-line setting.


Ideal Partition of Resources for Metareasoning

#artificialintelligence

We can achieve significant gains in the value of computation by metareasoning about the nature or extent of base-level problem solving before executing a solution. However, resources that are irrevocably committed to metareasoning are not available for executing a solution. Thus, it is important to determine the portion of resources we wish to apply to metareasoning and control versus to the execution of a solution plan. Recent research on rational agency has highlighted the importance of limiting the consumption of resources by metareasoning machinery. We shall introduce the metareasoning-partition problem–the problem of ideally apportioning costly reasoning resources to planning a solution versus applying resource to executing a solution to a problem. We exercise prototypical metareasoning-partition models to probe the relationships between time allocated to metareasoning and to execution for different problem classes.


Ideal Partition of Resources for Metareasoning

arXiv.org Artificial Intelligence

We can achieve significant gains in the value of computation by metareasoning about the nature or extent of base-level problem solving before executing a solution. However, resources that are irrevocably committed to metareasoning are not available for executing a solution. Thus, it is important to determine the portion of resources we wish to apply to metareasoning and control versus to the execution of a solution plan. Recent research on rational agency has highlighted the importance of limiting the consumption of resources by metareasoning machinery. We shall introduce the metareasoning-partition problem--the problem of ideally apportioning costly reasoning resources to planning a solution versus applying resource to executing a solution to a problem. We exercise prototypical metareasoning-partition models to probe the relationships between time allocated to metareasoning and to execution for different problem classes. Finally, we examine the value of metareasoning in the context of our functional analyses. This work was supported by a NASA Fellowship under Grant NCC-220-51, by the National Science Foundation under Grant IRI-8703710, and by the U.S. Army Research Office under Grant P-25514-EL. Computing facilities were provided by the SUMEX-AIM Resource under NLM Grant LM05208.


Automated Machine Learning, Bounded Rationality, and Rational Metareasoning

arXiv.org Artificial Intelligence

The notion of bounded rationality originated from the insight that perfectly rational behavior cannot be realized by agents with limited cognitive or computational resources. Research on bounded rationality, mainly initiated by Herbert Simon, has a longstanding tradition in economics and the social sciences, but also plays a major role in modern AI and intelligent agent design. Taking actions under bounded resources requires an agent to reflect on how to use these resources in an optimal way - hence, to reason and make decisions on a meta-level. In this paper, we will look at automated machine learning (AutoML) and related problems from the perspective of bounded rationality, essentially viewing an AutoML tool as an agent that has to train a model on a given set of data, and the search for a good way of doing so (a suitable "ML pipeline") as deliberation on a meta-level.


The Multi-phase spatial meta-heuristic algorithm for public health emergency transportation

arXiv.org Artificial Intelligence

The delivery of Medical Countermeasures(MCMs) for mass prophylaxis in the case of a bio-terrorist attack is an active research topic that has interested the research community over the past decades. The objective of this study is to design an efficient algorithm for the Receive Reload and Store Problem(RSS) in which we aim to find feasible routes to deliver MCMs to a target population considering time, physical, and human resources, and capacity limitations. For doing this, we adapt the p-median problem to the POD-based emergency response planning procedures and propose an efficient algorithm solution to perform the p-median in reasonable computational time. We present RE-PLAN, the Response PLan Analyzer system that contains some RSS solutions developed at The Center for Computational Epidemiology and Response Analysis (CeCERA) at the University of North Texas. Finally, we analyze a study case where we show how the computational performance of the algorithm can impact the process of decision making and emergency planning in the short and long terms.


Dise\~no e implementaci\'on de una meta-heur\'istica multi-poblacional de optimizaci\'on combinatoria enfocada a la resoluci\'on de problemas de asignaci\'on de rutas a veh\'iculos

arXiv.org Artificial Intelligence

Transportation is an essential area in the nowadays society, both for business sector and citizenry. There are different kinds of transportation systems, each one with its own characteristics. In the same way, various areas of knowledge can deal efficiently with the transport planning. The majority of the problems related with the transport and logistics have common characteristics, so they can be modeled as optimization problems, being able to see them as special cases of other generic problems. These problems fit into the combinatorial optimization field. Much of the problems of this type have an exceptional complexity. A great amount of meta-heuristics can be found the literature, each one with its advantages and disadvantages. Due to the high complexity of combinatorial optimization problems, there is no technique able to solve all these problems optimally. This fact makes the fields of combinatorial optimization and vehicle routing problems be a hot topic of research. This doctoral thesis will focus its efforts on developing a new meta-heuristic to solve different kind of vehicle routing problems. The presented technique offers an added value compared to existing methods, either in relation to the performance, and the contribution of conceptual originality. With the aim of validating the proposed model, the results obtained by the developed meta-heuristic have been compared with the ones obtained by other four algorithms of similar philosophy. Four well-known routing problems have been used in this experimentation, as well as two classical combinatorial optimization problems. In addition to the comparisons based on parameters such as the mean, or the standard deviation, two different statistical tests have been carried out. Thanks to these tests it can be affirmed that the proposed meta-heuristic is competitive in terms of performance and conceptual originality.


Algorithm selection by rational metareasoning as a model of human strategy selection

Neural Information Processing Systems

Selecting the right algorithm is an important problem in computer science, because the algorithm often has to exploit the structure of the input to be efficient. The human mind faces the same challenge. Therefore, solutions to the algorithm selection problem can inspire models of human strategy selection and vice versa. Here, we view the algorithm selection problem as a special case of metareasoning and derive a solution that outperforms existing methods in sorting algorithm selection. We apply our theory to model how people choose between cognitive strategies and test its prediction in a behavioral experiment.


Planning Time to Think: Metareasoning for On-Line Planning with Durative Actions

AAAI Conferences

When minimizing makespan during off-line planning, the fastest action sequence to reach a particular state is, by definition, preferred. When trying to reach a goal quickly in on-line planning, previous work has inherited that assumption: the faster of two paths that both reach the same state is usually considered to dominate the slower one. In this short paper, we point out that, when planning happens concurrently with execution, selecting a slower action can allow additional time for planning, leading to better plans. We present Slo'RTS, a metareasoning planning algorithm that estimates whether the expected improvement in future decision-making from this increased planning time is enough to make up for the increased duration of the selected action. Using simple benchmarks, we show that Slo'RTS can yield shorter time-to-goal than a conventional planner. This generalizes previous work on metareasoning in on-line planning and highlights the inherent uncertainty present in an on-line setting.


When Does Bounded-Optimal Metareasoning Favor Few Cognitive Systems?

AAAI Conferences

While optimal metareasoning is notoriously intractable, humans are nonetheless able to adaptively allocate their computational resources. A possible approximation that humans may use to do this is to only metareason over a finite set of cognitive systems that perform variable amounts of computation. The highly influential "dual-process" accounts of human cognition, which postulate the coexistence of a slow accurate system with a fast error-prone system, can be seen as a special case of this approximation. This raises two questions: how many cognitive systems should a bounded optimal agent be equipped with and what characteristics should those systems have? We investigate these questions in two settings: a one-shot decision between two alternatives, and planning under uncertainty in a Markov decision process. We find that the optimal number of systems depends on the variability of the environment and the costliness of metareasoning. Consistent with dual-process theories, we also find that when having two systems is optimal, then the first system is fast but error-prone and the second system is slow but accurate.


Metareasoning

AITopics Original Links

The capacity to think about our own thinking may lie at the heart of what it means to be both human and intelligent. Philosophers and cognitive scientists have investigated these matters for many years. Researchers in artificial intelligence have gone further, attempting to implement actual machines that mimic, simulate, and perhaps even replicate this capacity, called metareasoning. In this volume, leading authorities offer a variety of perspectives--drawn from philosophy, cognitive psychology, and computer science--on reasoning about the reasoning process. The book offers a simple model of reasoning about reason as a framework for its discussions.