Goto

Collaborating Authors

 Information Fusion




Robust simultaneous UWB-anchor calibration and robot localization for emergency situations

arXiv.org Artificial Intelligence

In this work, we propose a factor graph optimization (FGO) framework to simultaneously solve the calibration problem for Ultra-WideBand (UWB) anchors and the robot localization problem. Calibrating UWB anchors manually can be time-consuming and even impossible in emergencies or those situations without special calibration tools. Therefore, automatic estimation of the anchor positions becomes a necessity. The proposed method enables the creation of a soft sensor providing the position information of the anchors in a UWB network. This soft sensor requires only UWB and LiDAR measurements measured from a moving robot. The proposed FGO framework is suitable for the calibration of an extendable large UWB network. Moreover, the anchor calibration problem and robot localization problem can be solved simultaneously, which saves time for UWB network deployment. The proposed framework also helps to avoid artificial errors in the UWB-anchor position estimation and improves the accuracy and robustness of the robot-pose. The experimental results of the robot localization using LiDAR and a UWB network in a 3D environment are discussed, demonstrating the performance of the proposed method. More specifically, the anchor calibration problem with four anchors and the robot localization problem can be solved simultaneously and automatically within 30 seconds by the proposed framework. The supplementary video and codes can be accessed via https://github.com/LiuxhRobotAI/Simultaneous_calibration_localization.


Towards Diverse Device Heterogeneous Federated Learning via Task Arithmetic Knowledge Integration

Neural Information Processing Systems

Federated Learning (FL) has emerged as a promising paradigm for collaborative machine learning, while preserving user data privacy. Despite its potential, standard FL algorithms lack support for diverse heterogeneous device prototypes, which vary significantly in model and dataset sizes--from small IoT devices to large workstations. This limitation is only partially addressed by existing knowledge distillation (KD) techniques, which often fail to transfer knowledge effectively across a broad spectrum of device prototypes with varied capabilities. This failure primarily stems from two issues: the dilution of informative logits from more capable devices by those from less capable ones, and the use of a single integrated logits as the distillation target across all devices, which neglects their individual learning capacities and and the unique contributions of each device. To address these challenges, we introduce TAKFL, a novel KD-based framework that treats the knowledge transfer from each device prototype's ensemble as a separate task, independently distilling each to preserve its unique contributions and avoid dilution. TAKFL also incorporates a KD-based self-regularization technique to mitigate the issues related to the noisy and unsupervised ensemble distillation process. To integrate the separately distilled knowledge, we introduce an adaptive task arithmetic knowledge integration process, allowing each student model to customize the knowledge integration for optimal performance.


VeXKD: The Versatile Integration of Cross-Modal Fusion and Knowledge Distillation for 3D Perception

Neural Information Processing Systems

Recent advancements in 3D perception have led to a proliferation of network architectures, particularly those involving multi-modal fusion algorithms. While these fusion algorithms improve accuracy, their complexity often impedes real-time performance. This paper introduces VeXKD, an effective and Versatile framework that integrates Cross-Modal Fusion with Knowledge Distillation. VeXKD applies knowledge distillation exclusively to the Bird's Eye View (BEV) feature maps, enabling the transfer of cross-modal insights to single-modal students without additional inference time overhead. It avoids volatile components that can vary across various 3D perception tasks and student modalities, thus improving versatility. The framework adopts a modality-general cross-modal fusion module to bridge the modality gap between the multi-modal teachers and single-modal students. Furthermore, leveraging byproducts generated during fusion, our BEV query guided mask generation network identifies crucial spatial locations across different BEV feature maps from different tasks and semantic levels in a datadriven manner, significantly enhancing the effectiveness of knowledge distillation. Extensive experiments on the nuScenes dataset demonstrate notable improvements, with up to 6.9%/4.2%



Conditional Controllable Image Fusion

Neural Information Processing Systems

Image fusion aims to integrate complementary information from multiple input images acquired through various sources to synthesize a new fused image. Existing methods usually employ distinct constraint designs tailored to specific scenes, forming fixed fusion paradigms. However, this data-driven fusion approach is challenging to deploy in varying scenarios, especially in rapidly changing environments. To address this issue, we propose a conditional controllable fusion (CCF) framework for general image fusion tasks without specific training. Due to the dynamic differences of different samples, our CCF employs specific fusion constraints for each individual in practice. Given the powerful generative capabilities of the denoising diffusion model, we first inject the specific constraints into the pre-trained DDPM as adaptive fusion conditions. The appropriate conditions are dynamically selected to ensure the fusion process remains responsive to the specific requirements in each reverse diffusion stage. Thus, CCF enables conditionally calibrating the fused images step by step.


CRT-Fusion: Camera, Radar, Temporal Fusion Using Motion Information for 3D Object Detection Jisong Kim Jun Won Choi

Neural Information Processing Systems

Accurate and robust 3D object detection is a critical component in autonomous vehicles and robotics. While recent radar-camera fusion methods have made significant progress by fusing information in the bird's-eye view (BEV) representation, they often struggle to effectively capture the motion of dynamic objects, leading to limited performance in real-world scenarios. In this paper, we introduce CRT-Fusion, a novel framework that integrates temporal information into radar-camera fusion to address this challenge. Our approach comprises three key modules: Multi-View Fusion (MVF), Motion Feature Estimator (MFE), and Motion Guided Temporal Fusion (MGTF).


Fusion of Graph Neural Networks via Optimal Transport

arXiv.org Artificial Intelligence

In this paper, we explore the idea of combining GCNs into one model. To that end, we align the weights of different models layer-wise using optimal transport (OT). We present and evaluate three types of transportation costs and show that the studied fusion method consistently outperforms the performance of vanilla averaging. Finally, we present results suggesting that model fusion using OT is harder in the case of GCNs than MLPs and that incorporating the graph structure into the process does not improve the performance of the method.


Multimodal Data Integration for Sustainable Indoor Gardening: Tracking Anyplant with Time Series Foundation Model

arXiv.org Artificial Intelligence

Indoor gardening within sustainable buildings offers a transformative solution to urban food security and environmental sustainability. By 2030, urban farming, including Controlled Environment Agriculture (CEA) and vertical farming, is expected to grow at a compound annual growth rate (CAGR) of 13.2% from 2024 to 2030, according to market reports. This growth is fueled by advancements in Internet of Things (IoT) technologies, sustainable innovations such as smart growing systems, and the rising interest in green interior design. This paper presents a novel framework that integrates computer vision, machine learning (ML), and environmental sensing for the automated monitoring of plant health and growth. Unlike previous approaches, this framework combines RGB imagery, plant phenotyping data, and environmental factors such as temperature and humidity, to predict plant water stress in a controlled growth environment. The system utilizes high-resolution cameras to extract phenotypic features, such as RGB, plant area, height, and width while employing the Lag-Llama time series model to analyze and predict water stress. Experimental results demonstrate that integrating RGB, size ratios, and environmental data significantly enhances predictive accuracy, with the Fine-tuned model achieving the lowest errors (MSE = 0.420777, MAE = 0.595428) and reduced uncertainty. These findings highlight the potential of multimodal data and intelligent systems to automate plant care, optimize resource consumption, and align indoor gardening with sustainable building management practices, paving the way for resilient, green urban spaces.