Description Logic

Satisfiability and Query Answering in Description Logics with Global and Local Cardinality Constraints Artificial Intelligence

We introduce and investigate the expressive description logic (DL) ALCSCC++, in which the global and local cardinality constraints introduced in previous papers can be mixed. On the one hand, we prove that this does not increase the complexity of satisfiability checking and other standard inference problems. On the other hand, the satisfiability problem becomes undecidable if inverse roles are added to the languages. In addition, even without inverse roles, conjunctive query entailment in this DL turns out to be undecidable. We prove that decidability of querying can be regained if global and local constraints are not mixed and the global constraints are appropriately restricted. The latter result is based on a locally-acyclic model construction, and it reduces query entailment to ABox consistency in the restricted setting, i.e., to ABox consistency w.r.t. restricted cardinality constraints in ALCSCC, for which we can show an ExpTime upper bound.

Polynomial Rewritings from Expressive Description Logics with Closed Predicates to Variants of Datalog Artificial Intelligence

In many scenarios, complete and incomplete information coexist. For this reason, the knowledge representation and database communities have long shown interest in simultaneously supporting the closed- and the open-world views when reasoning about logic theories. Here we consider the setting of querying possibly incomplete data using logic theories, formalized as the evaluation of an ontology-mediated query (OMQ) that pairs a query with a theory, sometimes called an ontology, expressing background knowledge. This can be further enriched by specifying a set of closed predicates from the theory that are to be interpreted under the closed-world assumption, while the rest are interpreted with the open-world view. In this way we can retrieve more precise answers to queries by leveraging the partial completeness of the data. The central goal of this paper is to understand the relative expressiveness of OMQ languages in which the ontology is written in the expressive Description Logic (DL) ALCHOI and includes a set of closed predicates. We consider a restricted class of conjunctive queries. Our main result is to show that every query in this non-monotonic query language can be translated in polynomial time into Datalog with negation under the stable model semantics. To overcome the challenge that Datalog has no direct means to express the existential quantification present in ALCHOI, we define a two-player game that characterizes the satisfaction of the ontology, and design a Datalog query that can decide the existence of a winning strategy for the game. If there are no closed predicates, that is in the case of querying a plain ALCHOI knowledge base, our translation yields a positive disjunctive Datalog program of polynomial size. To the best of our knowledge, unlike previous translations for related fragments with expressive (non-Horn) DLs, these are the first polynomial time translations.

Game Description Logic with Integers: A GDL Numerical Extension Artificial Intelligence

Many problems can be viewed as games, where one or more agents try to ensure that certain objectives hold no matter t he behavior from the environment and other agents. In recent years, a num ber of logical formalisms have been proposed for specifying games amo ng which the Game Description Language (GDL) was established as the o fficial language for General Game Playing. Although numbers are rec urring in games, the description of games with numerical features in G DL requires the enumeration from all possible numeric values and the rel ation among them. Thereby, in this paper, we introduce the Game Descript ion Logic with Integers (GDLZ) to describe games with numerical varia bles, numerical parameters, as well as to perform numerical compari sons. We compare our approach with GDL and show that when describing t he same game, GDLZ is more compact.

An Introduction to Artificial Intelligence Applied to Multimedia


In this chapter, we give an introduction to symbolic artificial intelligence (AI) and discuss its relation and application to multimedia. We begin by defining what symbolic AI is, what distinguishes it from non-symbolic approaches, such as machine learning, and how it can used in the construction of advanced multimedia applications. We then introduce description logic (DL) and use it to discuss symbolic representation and reasoning. DL is the logical underpinning of OWL, the most successful family of ontology languages. After discussing DL, we present OWL and related Semantic Web technologies, such as RDF and SPARQL.

Statistical EL is ExpTime-complete Artificial Intelligence

We show that consistency of Statistical EL knowledge bases, as defined by Penaloza and Potyka in SUM 2017 [4] is ExpTime-hard. Together with the existing ExpTime upper bound by Baader in FroCos 2017 [1], the result leads to the ExpTime-completeness of the mentioned logic. Our proof goes via a reduction from consistency of EL extended with an atomic negation, which is known to be equivalent to the well-known ExpTime-complete description logic ALC.

Description Logics

Journal of Artificial Intelligence Research

Over the past two decades, Description Logics (DLs) have grown tremendously in popularity both within the AI community and beyond, due to the balanced trade-off they offer between expressivity and complexity of reasoning. The current success of DLs is the result of many years of rigorous research carried out by the DL community, which has yielded not only beautiful theoretical results but also powerful systems and im- portant practical applications. Notably, DLs provide the logical underpinning of ontology languages (including the W3C standard OWL), making them relevant to a variety of application domains, such as semantic web, medical informatics, life sciences, e-commerce, etc. The objective of this special track is to showcase the best of current DL research. The Track received 17 submissions of which the following seven papers for publication in the special track.

Extending Description Logic EL++ with Linear Constraints on the Probability of Axioms Artificial Intelligence

One of the main reasons to employ a description logic such as EL or EL++ is the fact that it has efficient, polynomial-time algorithmic properties such as deciding consistency and inferring subsumption. However, simply by adding negation of concepts to it, we obtain the expressivity of description logics whose decision procedure is {ExpTime}-complete. Similar complexity explosion occurs if we add probability assignments on concepts. To lower the resulting complexity, we instead concentrate on assigning probabilities to Axioms (GCIs). We show that the consistency detection problem for such a probabilistic description logic is NP-complete, and present a linear algebraic deterministic algorithm to solve it, using the column generation technique. We also examine and provide algorithms for the probabilistic extension problem, which consists of inferring the minimum and maximum probabilities for a new axiom, given a consistent probabilistic knowledge base.

Theoretical Foundations of Defeasible Description Logics Artificial Intelligence

We extend description logics (DLs) with non-monotonic reasoning features. We start by investigating a notion of defeasible subsumption in the spirit of defeasible conditionals as studied by Kraus, Lehmann and Magidor in the propositional case. In particular, we consider a natural and intuitive semantics for defeasible subsumption, and investigate KLM-style syntactic properties for both preferential and rational subsumption. Our contribution includes two representation results linking our semantic constructions to the set of preferential and rational properties considered. Besides showing that our semantics is appropriate, these results pave the way for more effective decision procedures for defeasible reasoning in DLs. Indeed, we also analyse the problem of non-monotonic reasoning in DLs at the level of entailment and present an algorithm for the computation of rational closure of a defeasible ontology. Importantly, our algorithm relies completely on classical entailment and shows that the computational complexity of reasoning over defeasible ontologies is no worse than that of reasoning in the underlying classical DL ALC.

An extended description logic system with knowledge element based on ALC Artificial Intelligence

With the rise of knowledge management and knowledge economy, the knowledge elements that directly link and embody the knowledge system have become the research focus and hotspot in certain areas. The existing knowledge element representation methods are limited in functions to deal with the formality, logic and reasoning. Based on description logic ALC and the common knowledge element model, in order to describe the knowledge element, the description logic ALC is expanded. The concept is extended to two different ones (that is, the object knowledge element concept and the attribute knowledge element concept). The relationship is extended to three (that is, relationship between object knowledge element concept and attribute knowledge element concept, relationship among object knowledge element concepts, relationship among attribute knowledge element concepts), and the inverse relationship constructor is added to propose a description logic KEDL system. By demonstrating, the relevant properties, such as completeness, reliability, of the described logic system KEDL are obtained. Finally, it is verified by the example that the description logic KEDL system has strong knowledge element description ability. Introduction With the rise of knowledge management and knowledge economy, knowledge has attracted people's attention as an important strategic resource. The direct control and management of knowledge itself has become the focus of attention in various disciplines.

Computing and Explaining Query Answers over Inconsistent DL-Lite Knowledge Bases

Journal of Artificial Intelligence Research

Several inconsistency-tolerant semantics have been introduced for querying inconsistent description logic knowledge bases. The first contribution of this paper is a practical approach for computing the query answers under three well-known such semantics, namely the AR, IAR and brave semantics, in the lightweight description logic DL-LiteR. We show that query answering under the intractable AR semantics can be performed efficiently by using IAR and brave semantics as tractable approximations and encoding the AR entailment problem as a propositional satisfiability (SAT) problem. The second issue tackled in this work is explaining why a tuple is a (non-)answer to a query under these semantics. We define explanations for positive and negative answers under the brave, AR and IAR semantics. We then study the computational properties of explanations in DL-LiteR. For each type of explanation, we analyze the data complexity of recognizing (preferred) explanations and deciding if a given assertion is relevant or necessary. We establish tight connections between intractable explanation problems and variants of SAT, enabling us to generate explanations by exploiting solvers for Boolean satisfaction and optimization problems. Finally, we empirically study the efficiency of our query answering and explanation framework using a benchmark we built upon the well-established LUBM benchmark.