Goto

Collaborating Authors

Description Logic


On the Complexity of Learning Description Logic Ontologies

arXiv.org Artificial Intelligence

Ontologies are a popular way of representing domain knowledge, in particular, knowledge in domains related to life sciences. (Semi-)automating the process of building an ontology has attracted researchers from different communities into a field called "Ontology Learning". We provide a formal specification of the exact and the probably approximately correct learning models from computational learning theory. Then, we recall from the literature complexity results for learning lightweight description logic (DL) ontologies in these models. Finally, we highlight other approaches proposed in the literature for learning DL ontologies.


A conditional, a fuzzy and a probabilistic interpretation of self-organising maps

arXiv.org Artificial Intelligence

In this paper we establish a link between preferential semantics for description logics and self-organising maps, which have been proposed as possible candidates to explain the psychological mechanisms underlying category generalisation. In particular, we show that a concept-wise multipreference semantics, which takes into account preferences with respect to different concepts and has been recently proposed for defeasible description logics, can be used to to provide a logical interpretation of SOMs. We also provide a logical interpretation of SOMs in terms of a fuzzy description logic as well as a probabilistic account.


First Order-Rewritability and Containment of Conjunctive Queries in Horn Description Logics

#artificialintelligence

We study FO-rewritability of conjunctive queries in the presence of ontologies formulated in a description logic between EL and Horn-SHIF, along with related query containment problems. Apart from providing characterizations, we establish complexity results ranging from ExpTime via NExpTime to 2ExpTime, pointing out several interesting effects. In particular, FO-rewriting is more complex for conjunctive queries than for atomic queries when inverse roles are present, but not otherwise.


First Order-Rewritability and Containment of Conjunctive Queries in Horn Description Logics

arXiv.org Artificial Intelligence

We study FO-rewritability of conjunctive queries in the presence of ontologies formulated in a description logic between EL and Horn-SHIF, along with related query containment problems. Apart from providing characterizations, we establish complexity results ranging from ExpTime via NExpTime to 2ExpTime, pointing out several interesting effects. In particular, FO-rewriting is more complex for conjunctive queries than for atomic queries when inverse roles are present, but not otherwise.


Conservative Extensions in Horn Description Logics with Inverse Roles

arXiv.org Artificial Intelligence

We investigate the decidability and computational complexity of conservative extensions and the related notions of inseparability and entailment in Horn description logics (DLs) with inverse roles. We consider both query conservative extensions, defined by requiring that the answers to all conjunctive queries are left unchanged, and deductive conservative extensions, which require that the entailed concept inclusions, role inclusions, and functionality assertions do not change. Upper bounds for query conservative extensions are particularly challenging because characterizations in terms of unbounded homomorphisms between universal models, which are the foundation of the standard approach to establishing decidability, fail in the presence of inverse roles. We resort to a characterization that carefully mixes unbounded and bounded homomorphisms and enables a decision procedure that combines tree automata and a mosaic technique. Our main results are that query conservative extensions are 2ExpTime-complete in all DLs between ELI and Horn-ALCHIF and between Horn-ALC and Horn-ALCHIF, and that deductive conservative extensions are 2ExpTime-complete in all DLs between ELI and ELHIF_\bot. The same results hold for inseparability and entailment.


Containment in Monadic Disjunctive Datalog, MMSNP, and Expressive Description Logics

arXiv.org Artificial Intelligence

We study query containment in three closely related formalisms: monadic disjunctive Datalog (MDDLog), MMSNP (a logical generalization of constraint satisfaction problems), and ontology-mediated queries (OMQs) based on expressive description logics and unions of conjunctive queries. Containment in MMSNP was known to be decidable due to a result by Feder and Vardi, but its exact complexity has remained open. We prove 2NEXPTIME-completeness and extend this result to monadic disjunctive Datalog and to OMQs.


On Finite and Unrestricted Query Entailment beyond SQ with Number Restrictions on Transitive Roles

arXiv.org Artificial Intelligence

We study the description logic SQ with number restrictions applicable to transitive roles, extended with either nominals or inverse roles. We show tight 2EXPTIME upper bounds for unrestricted entailment of regular path queries for both extensions and finite entailment of positive existential queries for nominals. For inverses, we establish 2EXPTIME-completeness for unrestricted and finite entailment of instance queries (the latter under restriction to a single, transitive role).


A Framework for Reasoning on Probabilistic Description Logics

arXiv.org Artificial Intelligence

While there exist several reasoners for Description Logics, very few of them can cope with uncertainty. BUNDLE is an inference framework that can exploit several OWL (non-probabilistic) reasoners to perform inference over Probabilistic Description Logics. In this chapter, we report the latest advances implemented in BUNDLE. In particular, BUNDLE can now interface with the reasoners of the TRILL system, thus providing a uniform method to execute probabilistic queries using different settings. BUNDLE can be easily extended and can be used either as a standalone desktop application or as a library in OWL API-based applications that need to reason over Probabilistic Description Logics. The reasoning performance heavily depends on the reasoner and method used to compute the probability. We provide a comparison of the different reasoning settings on several datasets.


Defeasible reasoning in Description Logics: an overview on DL^N

arXiv.org Artificial Intelligence

In complex areas such as law and science, knowledge has been in centuries formulated by primarily describing prototypical instances and properties, and then by overriding the general theory to include possible exceptions. For example, many laws are formulated by adding new norms that, in case of conflicts, may partially or completely override the previous ones. Similarly, biologists have been incrementally introducing exceptions to general properties. For instance, the human heart is usually located in the left-hand half of the thorax. Still there are exceptional individuals, with so-called situs inversus, whose heart is located on the opposite side. Eukariotic cells are those with a proper nucleus, by definition. Still they comprise mammalian red blood cells, that in their mature stage have no nucleus.


A framework for a modular multi-concept lexicographic closure semantics

arXiv.org Artificial Intelligence

We define a modular multi-concept extension of the lexicographic closure semantics for defeasible description logics with typicality. The idea is that of distributing the defeasible properties of concepts into different modules, according to their subject, and of defining a notion of preference for each module based on the lexicographic closure semantics. The preferential semantics of the knowledge base can then be defined as a combination of the preferences of the single modules. The range of possibilities, from fine grained to coarse grained modules, provides a spectrum of alternative semantics.