Constraint-Based Reasoning
Breaking Value Symmetry
Symmetry is an important factor in solving many constraint satisfaction problems. One common type of symmetry is when we have symmetric values. In a recent series of papers, we have studied methods to break value symmetries. Our results identify computational limits on eliminating value symmetry. For instance, we prove that pruning all symmetric values is NP-hard in general. Nevertheless, experiments show that much value symmetry can be broken in practice. These results may be useful to researchers in planning, scheduling and other areas as value symmetry occurs in many different domains.
Online Estimation of SAT Solving Runtime
We present an online method for estimating the cost of solving SAT problems. Modern SAT solvers present several challenges to estimate search cost including non-chronological backtracking, learning and restarts. Our method uses a linear model trained on data gathered at the start of search. We show the effectiveness of this method using random and structured problems. We demonstrate that predictions made in early restarts can be used to improve later predictions. We also show that we can use such cost estimations to select a solver from a portfolio.
SLIDE: A Useful Special Case of the CARDPATH Constraint
Bessiere, Christian, Hebrard, Emmanuel, Hnich, Brahim, Kiziltan, Zeynep, Walsh, Toby
We study the CardPath constraint. This ensures a given constraint holds a number of times down a sequence of variables. We show that SLIDE, a special case of CardPath where the slid constraint must hold always, can be used to encode a wide range of sliding sequence constraints including CardPath itself. We consider how to propagate SLIDE and provide a complete propagator for CardPath. Since propagation is NP-hard in general, we identify special cases where propagation takes polynomial time. Our experiments demonstrate that using SLIDE to encode global constraints can be as efficient and effective as specialised propagators.
The Parameterized Complexity of Global Constraints
Bessiere, Christian, Hebrard, Emmanuel, Hnich, Brahim, Kiziltan, Zeynep, Walsh, Toby
We argue that parameterized complexity is a useful tool with which to study global constraints. In particular, we show that many global constraints which are intractable to propagate completely have natural parameters which make them fixed-parameter tractable and which are easy to compute. This tractability tends either to be the result of a simple dynamic program or of a decomposition which has a strong backdoor of bounded size. This strong backdoor is often a cycle cutset. We also show that parameterized complexity can be used to study other aspects of constraint programming like symmetry breaking. For instance, we prove that value symmetry is fixed-parameter tractable to break in the number of symmetries. Finally, we argue that parameterized complexity can be used to derive results about the approximability of constraint propagation.
Filtering Algorithms for the Multiset Ordering Constraint
Frisch, Alan, Hnich, Brahim, Kiziltan, Zeynep, Miguel, Ian, Walsh, Toby
Constraint programming (CP) has been used with great success to tackle a wide variety of constraint satisfaction problems which are computationally intractable in general. Global constraints are one of the important factors behind the success of CP. In this paper, we study a new global constraint, the multiset ordering constraint, which is shown to be useful in symmetry breaking and searching for leximin optimal solutions in CP. We propose efficient and effective filtering algorithms for propagating this global constraint. We show that the algorithms are sound and complete and we discuss possible extensions. We also consider alternative propagation methods based on existing constraints in CP toolkits. Our experimental results on a number of benchmark problems demonstrate that propagating the multiset ordering constraint via a dedicated algorithm can be very beneficial.
Combining Symmetry Breaking and Global Constraints
Katsirelos, George, Narodytska, Nina, Walsh, Toby
We propose a new family of constraints which combine together lexicographical ordering constraints for symmetry breaking with other common global constraints. We give a general purpose propagator for this family of constraints, and show how to improve its complexity by exploiting properties of the included global constraints.
Decompositions of Grammar Constraints
Quimper, Claude-Guy, Walsh, Toby
A wide range of constraints can be compactly specified using automata or formal languages. In a sequence of recent papers, we have shown that an effective means to reason with such specifications is to decompose them into primitive constraints. We can then, for instance, use state of the art SAT solvers and profit from their advanced features like fast unit propagation, clause learning, and conflict-based search heuristics. This approach holds promise for solving combinatorial problems in scheduling, rostering, and configuration, as well as problems in more diverse areas like bioinformatics, software testing and natural language processing. In addition, decomposition may be an effective method to propagate other global constraints.
Reformulating Global Grammar Constraints
Katsirelos, George, Narodytska, Nina, Walsh, Toby
An attractive mechanism to specify global constraints in rostering and other domains is via formal languages. For instance, the Regular and Grammar constraints specify constraints in terms of the languages accepted by an automaton and a context-free grammar respectively. Taking advantage of the fixed length of the constraint, we give an algorithm to transform a context-free grammar into an automaton. We then study the use of minimization techniques to reduce the size of such automata and speed up propagation. We show that minimizing such automata after they have been unfolded and domains initially reduced can give automata that are more compact than minimizing before unfolding and reducing. Experimental results show that such transformations can improve the size of rostering problems that we can 'model and run'.
Range and Roots: Two Common Patterns for Specifying and Propagating Counting and Occurrence Constraints
Bessiere, Christian, Hebrard, Emmanuel, Hnich, Brahim, Kiziltan, Zeynep, Walsh, Toby
We propose Range and Roots which are two common patterns useful for specifying a wide range of counting and occurrence constraints. We design specialised propagation algorithms for these two patterns. Counting and occurrence constraints specified using these patterns thus directly inherit a propagation algorithm. To illustrate the capabilities of the Range and Roots constraints, we specify a number of global constraints taken from the literature. Preliminary experiments demonstrate that propagating counting and occurrence constraints using these two patterns leads to a small loss in performance when compared to specialised global constraints and is competitive with alternative decompositions using elementary constraints.
Learning DTW Global Constraint for Time Series Classification
Niennattrakul, Vit, Ratanamahatana, Chotirat Ann
1-Nearest Neighbor with the Dynamic Time Warping (DTW) distance is one of the most effective classifiers on time series domain. Since the global constraint has been introduced in speech community, many global constraint models have been proposed including Sakoe-Chiba (S-C) band, Itakura Parallelogram, and Ratanamahatana-Keogh (R-K) band. The R-K band is a general global constraint model that can represent any global constraints with arbitrary shape and size effectively. However, we need a good learning algorithm to discover the most suitable set of R-K bands, and the current R-K band learning algorithm still suffers from an 'overfitting' phenomenon. In this paper, we propose two new learning algorithms, i.e., band boundary extraction algorithm and iterative learning algorithm. The band boundary extraction is calculated from the bound of all possible warping paths in each class, and the iterative learning is adjusted from the original R-K band learning. We also use a Silhouette index, a well-known clustering validation technique, as a heuristic function, and the lower bound function, LB_Keogh, to enhance the prediction speed. Twenty datasets, from the Workshop and Challenge on Time Series Classification, held in conjunction of the SIGKDD 2007, are used to evaluate our approach.