Belief Revision
Impact of Stickers on Multimodal Chat Sentiment Analysis and Intent Recognition: A New Task, Dataset and Baseline
Shi, Yuanchen, Ma, Biao, Kong, Fang
Stickers are increasingly used in social media to express sentiment and intent. When finding typing troublesome, people often use a sticker instead. Despite the significant impact of stickers on sentiment analysis and intent recognition, little research has been conducted. To address this gap, we propose a new task: Multimodal chat Sentiment Analysis and Intent Recognition involving Stickers (MSAIRS). Additionally, we introduce a novel multimodal dataset containing Chinese chat records and stickers excerpted from several mainstream social media platforms. Our dataset includes paired data with the same text but different stickers, and various stickers consisting of the same images with different texts, allowing us to better understand the impact of stickers on chat sentiment and intent. We also propose an effective multimodal joint model, MMSAIR, for our task, which is validated on our datasets and indicates that visual information of stickers counts. Our dataset and code will be publicly available.
Semgrex and Ssurgeon, Searching and Manipulating Dependency Graphs
Bauer, John, Kiddon, Chloe, Yeh, Eric, Shan, Alex, Manning, Christopher D.
Searching dependency graphs and manipulating them can be a time consuming and challenging task to get right. We document Semgrex, a system for searching dependency graphs, and introduce Ssurgeon, a system for manipulating the output of Semgrex. The compact language used by these systems allows for easy command line or API processing of dependencies. Additionally, integration with publicly released toolkits in Java and Python allows for searching text relations and attributes over natural text.
Deep Dependency Networks and Advanced Inference Schemes for Multi-Label Classification
Arya, Shivvrat, Xiang, Yu, Gogate, Vibhav
We present a unified framework called deep dependency networks (DDNs) that combines dependency networks and deep learning architectures for multi-label classification, with a particular emphasis on image and video data. The primary advantage of dependency networks is their ease of training, in contrast to other probabilistic graphical models like Markov networks. In particular, when combined with deep learning architectures, they provide an intuitive, easy-to-use loss function for multi-label classification. A drawback of DDNs compared to Markov networks is their lack of advanced inference schemes, necessitating the use of Gibbs sampling. To address this challenge, we propose novel inference schemes based on local search and integer linear programming for computing the most likely assignment to the labels given observations. We evaluate our novel methods on three video datasets (Charades, TACoS, Wetlab) and three image datasets (MS-COCO, PASCAL VOC, NUS-WIDE), comparing their performance with (a) basic neural architectures and (b) neural architectures combined with Markov networks equipped with advanced inference and learning techniques. Our results demonstrate the superiority of our new DDN methods over the two competing approaches.
Goal Recognition via Linear Programming
Meneguzzi, Felipe, Santos, Luísa R. de A., Pereira, Ramon Fraga, Pereira, André G.
Goal Recognition is the task by which an observer aims to discern the goals that correspond to plans that comply with the perceived behavior of subject agents given as a sequence of observations. Research on Goal Recognition as Planning encompasses reasoning about the model of a planning task, the observations, and the goals using planning techniques, resulting in very efficient recognition approaches. In this article, we design novel recognition approaches that rely on the Operator-Counting framework, proposing new constraints, and analyze their constraints' properties both theoretically and empirically. The Operator-Counting framework is a technique that efficiently computes heuristic estimates of cost-to-goal using Integer/Linear Programming (IP/LP). In the realm of theory, we prove that the new constraints provide lower bounds on the cost of plans that comply with observations. We also provide an extensive empirical evaluation to assess how the new constraints improve the quality of the solution, and we found that they are especially informed in deciding which goals are unlikely to be part of the solution. Our novel recognition approaches have two pivotal advantages: first, they employ new IP/LP constraints for efficiently recognizing goals; second, we show how the new IP/LP constraints can improve the recognition of goals under both partial and noisy observability.
Adversarially-Robust Inference on Trees via Belief Propagation
We introduce and study the problem of posterior inference on tree-structured graphical models in the presence of a malicious adversary who can corrupt some observed nodes. In the well-studied broadcasting on trees model, corresponding to the ferromagnetic Ising model on a $d$-regular tree with zero external field, when a natural signal-to-noise ratio exceeds one (the celebrated Kesten-Stigum threshold), the posterior distribution of the root given the leaves is bounded away from $\mathrm{Ber}(1/2)$, and carries nontrivial information about the sign of the root. This posterior distribution can be computed exactly via dynamic programming, also known as belief propagation. We first confirm a folklore belief that a malicious adversary who can corrupt an inverse-polynomial fraction of the leaves of their choosing makes this inference impossible. Our main result is that accurate posterior inference about the root vertex given the leaves is possible when the adversary is constrained to make corruptions at a $\rho$-fraction of randomly-chosen leaf vertices, so long as the signal-to-noise ratio exceeds $O(\log d)$ and $\rho \leq c \varepsilon$ for some universal $c > 0$. Since inference becomes information-theoretically impossible when $\rho \gg \varepsilon$, this amounts to an information-theoretically optimal fraction of corruptions, up to a constant multiplicative factor. Furthermore, we show that the canonical belief propagation algorithm performs this inference.
Conformal Intent Classification and Clarification for Fast and Accurate Intent Recognition
Hengst, Floris den, Wolter, Ralf, Altmeyer, Patrick, Kaygan, Arda
We present Conformal Intent Classification and Clarification (CICC), a framework for fast and accurate intent classification for task-oriented dialogue systems. The framework turns heuristic uncertainty scores of any intent classifier into a clarification question that is guaranteed to contain the true intent at a pre-defined confidence level. By disambiguating between a small number of likely intents, the user query can be resolved quickly and accurately. Additionally, we propose to augment the framework for out-of-scope detection. In a comparative evaluation using seven intent recognition datasets we find that CICC generates small clarification questions and is capable of out-of-scope detection. CICC can help practitioners and researchers substantially in improving the user experience of dialogue agents with specific clarification questions.
Belief Samples Are All You Need For Social Learning
JafariNodeh, Mahyar, Ajorlou, Amir, Jadbabaie, Ali
In this paper, we consider the problem of social learning, where a group of agents embedded in a social network are interested in learning an underlying state of the world. Agents have incomplete, noisy, and heterogeneous sources of information, providing them with recurring private observations of the underlying state of the world. Agents can share their learning experience with their peers by taking actions observable to them, with values from a finite feasible set of states. Actions can be interpreted as samples from the beliefs which agents may form and update on what the true state of the world is. Sharing samples, in place of full beliefs, is motivated by the limited communication, cognitive, and information-processing resources available to agents especially in large populations. Previous work (Salhab et al.) poses the question as to whether learning with probability one is still achievable if agents are only allowed to communicate samples from their beliefs. We provide a definite positive answer to this question, assuming a strongly connected network and a ``collective distinguishability'' assumption, which are both required for learning even in full-belief-sharing settings. In our proposed belief update mechanism, each agent's belief is a normalized weighted geometric interpolation between a fully Bayesian private belief -- aggregating information from the private source -- and an ensemble of empirical distributions of the samples shared by her neighbors over time. By carefully constructing asymptotic almost-sure lower/upper bounds on the frequency of shared samples matching the true state/or not, we rigorously prove the convergence of all the beliefs to the true state, with probability one.
Uniqueness of Belief Propagation on Signed Graphs
While loopy Belief Propagation (LBP) has been utilized in a wide variety of applications with empirical success, it comes with few theoretical guarantees. Especially, if the interactions of random variables in a graphical model are strong, the behaviors of the algorithm can be difficult to analyze due to underlying phase transitions. In this paper, we develop a novel approach to the uniqueness problem of the LBP fixed point; our new "necessary and sufficient" condition is stated in terms of graphs and signs, where the sign denotes the types (attractive/repulsive) of the interaction (i.e., compatibility function) on the edge. In all previous works, uniqueness is guaranteed only in the situations where the strength of the interactions are "sufficiently" small in certain senses. In contrast, our condition covers arbitrary strong interactions on the specified class of signed graphs. The result of this paper is based on the recent theoretical advance in the LBP algorithm; the connection with the graph zeta function.
Belief Change based on Knowledge Measures
Straccia, Umberto, Casini, Giovanni
Knowledge Measures (KMs) aim at quantifying the amount of knowledge/information that a knowledge base carries. On the other hand, Belief Change (BC) is the process of changing beliefs (in our case, in terms of contraction, expansion and revision) taking into account a new piece of knowledge, which possibly may be in contradiction with the current belief. We propose a new quantitative BC framework that is based on KMs by defining belief change operators that try to minimise, from an information-theoretic point of view, the surprise that the changed belief carries. To this end, we introduce the principle of minimal surprise. In particular, our contributions are (i) a general information-theoretic approach to KMs for which [1] is a special case; (ii) KM-based BC operators that satisfy the so-called AGM postulates; and (iii) a characterisation of any BC operator that satisfies the AGM postulates as a KM-based BC operator, i.e., any BC operator satisfying the AGM postulates can be encoded within our quantitative BC framework. We also introduce quantitative measures that account for the information loss of contraction, information gain of expansion and information change of revision. We also give a succinct look into the problem of iterated revision, which deals with the application of a sequence of revision operations in our framework, and also illustrate how one may build from our KM-based contraction operator also one not satisfying the (in)famous recovery postulate, by focusing on the so-called severe withdrawal model as an illustrative example.