Goto

Collaborating Authors

 Belief Revision




A Knowledge Compilation Map

Journal of Artificial Intelligence Research

We propose a perspective on knowledge compilation which calls for analyzing different compilation approaches according to two key dimensions: the succinctness of the target compilation language, and the class of queries and transformations that the language supports in polytime. We then provide a knowledge compilation map, which analyzes a large number of existing target compilation languages according to their succinctness and their polytime transformations and queries. We argue that such analysis is necessary for placing new compilation approaches within the context of existing ones. We also go beyond classical, flat target compilation languages based on CNF and DNF, and consider a richer, nested class based on directed acyclic graphs (such as OBDDs), which we show to include a relatively large number of target compilation languages.


Generalized Belief Propagation

Neural Information Processing Systems

Belief propagation (BP) was only supposed to work for treelike networks but works surprisingly well in many applications involving networks with loops, including turbo codes. However, there has been little understanding of the algorithm or the nature of the solutions it finds for general graphs. We show that BP can only converge to a stationary point of an approximate free energy, known as the Bethe free energy in statistical physics.This result characterizes BP fixed-points and makes connections with variational approaches to approximate inference. More importantly, our analysis lets us build on the progress made in statistical physics since Bethe's approximation was introduced in 1935. Kikuchi and others have shown how to construct more accurate freeenergy approximations, of which Bethe's approximation is the simplest.


Reinforcement Learning Using Approximate Belief States

Neural Information Processing Systems

The problem of developing good policies for partially observable Markov decision problems (POMDPs) remains one of the most challenging areas of research in stochastic planning. One line of research in this area involves the use of reinforcement learning with belief states, probability distributions over the underlying model states. This is a promising method for small problems, but its application is limited by the intractability of computing or representing a full belief state for large problems. Recent work shows that, in many settings, we can maintain an approximate belief state, which is fairly close to the true belief state. In particular, great success has been shown with approximate belief states that marginalize out correlations between state variables. In this paper, we investigate two methods of full belief state reinforcement learning and one novel method for reinforcement learning using factored approximate belief states. We compare the performance of these algorithms on several well-known problem from the literature. Our results demonstrate the importance of approximate belief state representations for large problems.


Reinforcement Learning Using Approximate Belief States

Neural Information Processing Systems

The problem of developing good policies for partially observable Markov decision problems (POMDPs) remains one of the most challenging areas ofresearch in stochastic planning. One line of research in this area involves the use of reinforcement learning with belief states, probability distributionsover the underlying model states. This is a promising methodfor small problems, but its application is limited by the intractability ofcomputing or representing a full belief state for large problems. Recent work shows that, in many settings, we can maintain an approximate belief state, which is fairly close to the true belief state. In particular, great success has been shown with approximate belief states that marginalize out correlations between state variables. In this paper, we investigate two methods of full belief state reinforcement learning and one novel method for reinforcement learning using factored approximate belief states. We compare the performance of these algorithms on several well-known problem from the literature. Our results demonstrate the importance ofapproximate belief state representations for large problems.


Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology

Neural Information Processing Systems

Local "belief propagation" rules of the sort proposed by Pearl [15] are guaranteed to converge to the correct posterior probabilities in singly connected graphical models. Recently, a number of researchers have empirically demonstratedgood performance of "loopy belief propagation" using these same rules on graphs with loops. Perhaps the most dramatic instance is the near Shannon-limit performance of "Turbo codes", whose decoding algorithm is equivalent to loopy belief propagation. Except for the case of graphs with a single loop, there has been little theoretical understandingof the performance of loopy propagation. Here we analyze belief propagation in networks with arbitrary topologies when the nodes in the graph describe jointly Gaussian random variables.


Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology

Neural Information Processing Systems

Local "belief propagation" rules of the sort proposed by Pearl [15] are guaranteed to converge to the correct posterior probabilities in singly connected graphical models. Recently, a number of researchers have empirically demonstrated good performance of "loopy belief propagation" using these same rules on graphs with loops. Perhaps the most dramatic instance is the near Shannon-limit performance of "Turbo codes", whose decoding algorithm is equivalent to loopy belief propagation. Except for the case of graphs with a single loop, there has been little theoretical understanding of the performance of loopy propagation. Here we analyze belief propagation in networks with arbitrary topologies when the nodes in the graph describe jointly Gaussian random variables.


Space Efficiency of Propositional Knowledge Representation Formalisms

Journal of Artificial Intelligence Research

We investigate the space efficiency of a Propositional Knowledge Representation (PKR) formalism. Intuitively, the space efficiency of a formalism F in representing a certain piece of knowledge A, is the size of the shortest formula of F that represents A. In this paper we assume that knowledge is either a set of propositional interpretations (models) or a set of propositional formulae (theorems). We provide a formal way of talking about the relative ability of PKR formalisms to compactly represent a set of models or a set of theorems. We introduce two new compactness measures, the corresponding classes, and show that the relative space efficiency of a PKR formalism in representing models/theorems is directly related to such classes. In particular, we consider formalisms for nonmonotonic reasoning, such as circumscription and default logic, as well as belief revision operators and the stable model semantics for logic programs with negation. One interesting result is that formalisms with the same time complexity do not necessarily belong to the same space efficiency class.


Modeling Belief in Dynamic Systems, Part II: Revision and Update

Journal of Artificial Intelligence Research

The study of belief change has been an active area in philosophy and AI. In recent years two special cases of belief change, belief revision and belief update, have been studied in detail. In a companion paper (Friedman & Halpern, 1997), we introduce a new framework to model belief change. This framework combines temporal and epistemic modalities with a notion of plausibility, allowing us to examine the change of beliefs over time. In this paper, we show how belief revision and belief update can be captured in our framework. This allows us to compare the assumptions made by each method, and to better understand the principles underlying them. In particular, it shows that Katsuno and Mendelzon's notion of belief update (Katsuno & Mendelzon, 1991a) depends on several strong assumptions that may limit its applicability in artificial intelligence. Finally, our analysis allow us to identify a notion of minimal change that underlies a broad range of belief change operations including revision and update.