Goto

Collaborating Authors

 Belief Revision


Stable Fixed Points of Loopy Belief Propagation Are Local Minima of the Bethe Free Energy

Neural Information Processing Systems

We extend recent work on the connection between loopy belief propagation and the Bethe free energy. Constrained minimization of the Bethe free energy can be turned into an unconstrained saddle-point problem. Both converging double-loop algorithms and standard loopy belief propagation can be interpreted as attempts to solve this saddle-point problem. Stability analysis then leads us to conclude that stable fixed points of loopy belief propagation must be (local) minima of the Bethe free energy. Perhaps surprisingly, the converse need not be the case: minima can be unstable fixed points. We illustrate this with an example and discuss implications.


Fractional Belief Propagation

Neural Information Processing Systems

We consider loopy belief propagation for approximate inference in probabilistic graphical models. A limitation of the standard algorithm is that clique marginals are computed as if there were no loops in the graph. To overcome this limitation, we introduce fractional belief propagation. Fractional belief propagation is formulated in terms of a family of approximate free energies, which includes the Bethe free energy and the naive mean-field free as special cases. Using the linear response correction of the clique marginals, the scale parameters can be tuned. Simulation results illustrate the potential merits of the approach.


Stable Fixed Points of Loopy Belief Propagation Are Local Minima of the Bethe Free Energy

Neural Information Processing Systems

We extend recent work on the connection between loopy belief propagation and the Bethe free energy. Constrained minimization of the Bethe free energy can be turned into an unconstrained saddle-point problem. Both converging double-loop algorithms and standard loopy belief propagation can be interpreted asattempts to solve this saddle-point problem. Stability analysis then leads us to conclude that stable fixed points of loopy belief propagation must be (local) minima of the Bethe free energy. Perhaps surprisingly, the converse need not be the case: minima can be unstable fixed points. We illustrate this with an example and discuss implications.


Fractional Belief Propagation

Neural Information Processing Systems

We consider loopy belief propagation for approximate inference in probabilistic graphicalmodels. A limitation of the standard algorithm is that clique marginals are computed as if there were no loops in the graph. To overcome this limitation, we introduce fractional belief propagation. Fractional belief propagation is formulated in terms of a family of approximate freeenergies, which includes the Bethe free energy and the naive mean-field free as special cases. Using the linear response correction ofthe clique marginals, the scale parameters can be tuned. Simulation results illustrate the potential merits of the approach.


An Architectural Approach to Ensuring Consistency in Hierarchical Execution

Journal of Artificial Intelligence Research

Hierarchical task decomposition is a method used in many agent systems to organize agent knowledge. This work shows how the combination of a hierarchy and persistent assertions of knowledge can lead to difficulty in maintaining logical consistency in asserted knowledge. We explore the problematic consequences of persistent assumptions in the reasoning process and introduce novel potential solutions. Having implemented one of the possible solutions, Dynamic Hierarchical Justification, its effectiveness is demonstrated with an empirical analysis.


Representing and Aggregating Conflicting Beliefs

Journal of Artificial Intelligence Research

We consider the two-fold problem of representing collective beliefs and aggregating these beliefs. We propose a novel representation for collective beliefs that uses modular, transitive relations over possible worlds. They allow us to represent conflicting opinions and they have a clear semantics, thus improving upon the quasi-transitive relations often used in social choice. We then describe a way to construct the belief state of an agent informed by a set of sources of varying degrees of reliability. This construction circumvents Arrow's Impossibility Theorem in a satisfactory manner by accounting for the explicitly encoded conflicts. We give a simple set-theory-based operator for combining the information of multiple agents. We show that this operator satisfies the desirable invariants of idempotence, commutativity, and associativity, and, thus, is well-behaved when iterated, and we describe a computationally effective way of computing the resulting belief state. Finally, we extend our framework to incorporate voting.


MIME: Mutual Information Minimization and Entropy Maximization for Bayesian Belief Propagation

Neural Information Processing Systems

Bayesian belief propagation in graphical models has been recently shown to have very close ties to inference methods based in statistical physics. After Yedidia et al. demonstrated that belief propagation fixed points correspond to extrema of the so-called Bethe free energy, Yuille derived a double loop algorithm that is guaranteed to converge to a local minimum of the Bethe free energy. Yuille's algorithm is based on a certain decomposition of the Bethe free energy and he mentions that other decompositions are possible and may even be fruitful. In the present work, we begin with the Bethe free energy and show that it has a principled interpretation as pairwise mutual information minimization and marginal entropy maximization (MIME). Next, we construct a family of free energy functions from a spectrum of decompositions of the original Bethe free energy. For each free energy in this family, we develop a new algorithm that is guaranteed to converge to a local minimum. Preliminary computer simulations are in agreement with this theoretical development.


Information Geometrical Framework for Analyzing Belief Propagation Decoder

Neural Information Processing Systems

The mystery of belief propagation (BP) decoder, especially of the turbo decoding, is studied from information geometrical viewpoint. The loopy belief network (BN) of turbo codes makes it difficult to obtain the true "belief" by BP, and the characteristics of the algorithm and its equilibrium are not clearly understood. Our study gives an intuitive understanding of the mechanism, and a new framework for the analysis. Based on the framework, we reveal basic properties of the turbo decoding.


Very loopy belief propagation for unwrapping phase images

Neural Information Processing Systems

Since the discovery that the best error-correcting decoding algorithm can be viewed as belief propagation in a cycle-bound graph, researchers have been trying to determine under what circumstances "loopy belief propagation" is effective for probabilistic inference. Despite several theoretical advances in our understanding of loopy belief propagation, to our knowledge, the only problem that has been solved using loopy belief propagation is error-correcting decoding on Gaussian channels. We propose a new representation for the two-dimensional phase unwrapping problem, and we show that loopy belief propagation produces results that are superior to existing techniques. This is an important result, since many imaging techniques, including magnetic resonance imaging and interferometric synthetic aperture radar, produce phase-wrapped images. Interestingly, the graph that we use has a very large number of very short cycles, supporting evidence that a large minimum cycle length is not needed for excellent results using belief propagation. 1 Introduction Phase unwrapping is an easily stated, fundamental problem in image processing (Ghiglia and Pritt 1998).


Information Geometrical Framework for Analyzing Belief Propagation Decoder

Neural Information Processing Systems

The mystery of belief propagation (BP) decoder, especially of the turbo decoding, is studied from information geometrical viewpoint. The loopy belief network (BN) of turbo codes makes it difficult to obtain the true "belief" by BP, and the characteristics of the algorithm and its equilibrium arenot clearly understood. Our study gives an intuitive understanding of the mechanism, and a new framework for the analysis. Based on the framework, we reveal basic properties of the turbo decoding.