Goto

Collaborating Authors

 Belief Revision


Leveraging Full Dependency Parsing Graph Information For Biomedical Event Extraction

arXiv.org Artificial Intelligence

Many models are proposed in the literature on biomedical event extraction(BEE). Some of them use the shortest dependency path(SDP) information to represent the argument classification task. There is an issue with this representation since even missing one word from the dependency parsing graph may totally change the final prediction. To this end, the full adjacency matrix of the dependency graph is used to embed individual tokens using a graph convolutional network(GCN). An ablation study is also done to show the effect of the dependency graph on the overall performance. The results show a significant improvement when dependency graph information is used. The proposed model slightly outperforms state-of-the-art models on BEE over different datasets.


Goal Recognition using Actor-Critic Optimization

arXiv.org Artificial Intelligence

Goal Recognition aims to infer an agent's goal from a sequence of observations. Existing approaches often rely on manually engineered domains and discrete representations. Deep Recognition using Actor-Critic Optimization (DRACO) is a novel approach based on deep reinforcement learning that overcomes these limitations by providing two key contributions. First, it is the first goal recognition algorithm that learns a set of policy networks from unstructured data and uses them for inference. Second, DRACO introduces new metrics for assessing goal hypotheses through continuous policy representations. DRACO achieves state-of-the-art performance for goal recognition in discrete settings while not using the structured inputs used by existing approaches. Moreover, it outperforms these approaches in more challenging, continuous settings at substantially reduced costs in both computing and memory. Together, these results showcase the robustness of the new algorithm, bridging traditional goal recognition and deep reinforcement learning.


A Computationally Grounded Framework for Cognitive Attitudes (extended version)

arXiv.org Artificial Intelligence

We introduce a novel language for reasoning about agents' cognitive attitudes of both epistemic and motivational type. We interpret it by means of a computationally grounded semantics using belief bases. Our language includes five types of modal operators for implicit belief, complete attraction, complete repulsion, realistic attraction and realistic repulsion. We give an axiomatization and show that our operators are not mutually expressible and that they can be combined to represent a large variety of psychological concepts including ambivalence, indifference, being motivated, being demotivated and preference. We present a dynamic extension of the language that supports reasoning about the effects of belief change operations. Finally, we provide a succinct formulation of model checking for our languages and a PSPACE model checking algorithm relying on a reduction into TQBF. We present some experimental results for the implemented algorithm on computation time in a concrete example.


A Variable Occurrence-Centric Framework for Inconsistency Handling (Extended Version)

arXiv.org Artificial Intelligence

In this paper, we introduce a syntactic framework for analyzing and handling inconsistencies in propositional bases. Our approach focuses on examining the relationships between variable occurrences within conflicts. We propose two dual concepts: Minimal Inconsistency Relation (MIR) and Maximal Consistency Relation (MCR). Each MIR is a minimal equivalence relation on variable occurrences that results in inconsistency, while each MCR is a maximal equivalence relation designed to prevent inconsistency. Notably, MIRs capture conflicts overlooked by minimal inconsistent subsets. Using MCRs, we develop a series of non-explosive inference relations. The main strategy involves restoring consistency by modifying the propositional base according to each MCR, followed by employing the classical inference relation to derive conclusions. Additionally, we propose an unusual semantics that assigns truth values to variable occurrences instead of the variables themselves. The associated inference relations are established through Boolean interpretations compatible with the occurrence-based models.


A logic for reasoning with inconsistent knowledge -- A reformulation using nowadays terminology (2024)

arXiv.org Artificial Intelligence

In many situations humans have to reason with inconsistent knowledge. These inconsistencies may occur due to not fully reliable sources of information. In order to reason with inconsistent knowledge, it is not possible to view a set of premisses as absolute truths as is done in predicate logic. Viewing the set of premisses as a set of assumptions, however, it is possible to deduce useful conclusions from an inconsistent set of premisses. In this paper a logic for reasoning with inconsistent knowledge is described. This logic is a generalization of the work of N. Rescher [15]. In the logic a reliability relation is used to choose between incompatible assumptions. These choices are only made when a contradiction is derived. As long as no contradiction is derived, the knowledge is assumed to be consistent. This makes it possible to define an argumentation-based deduction process for the logic. For the logic a semantics based on the ideas of Y. Shoham [22, 23], is defined. It turns out that the semantics for the logic is a preferential semantics according to the definition S. Kraus, D. Lehmann and M. Magidor [12]. Therefore the logic is a logic of system P and possesses all the properties of an ideal non-monotonic logic.


TECO: Improving Multimodal Intent Recognition with Text Enhancement through Commonsense Knowledge Extraction

arXiv.org Artificial Intelligence

The objective of multimodal intent recognition (MIR) is to leverage various modalities-such as text, video, and audio-to detect user intentions, which is crucial for understanding human language and context in dialogue systems. Despite advances in this field, two main challenges persist: (1) effectively extracting and utilizing semantic information from robust textual features; (2) aligning and fusing non-verbal modalities with verbal ones effectively. This paper proposes a Text Enhancement with CommOnsense Knowledge Extractor (TECO) to address these challenges. We begin by extracting relations from both generated and retrieved knowledge to enrich the contextual information in the text modality. Subsequently, we align and integrate visual and acoustic representations with these enhanced text features to form a cohesive multimodal representation. Our experimental results show substantial improvements over existing baseline methods.


Learning to Achieve Goals with Belief State Transformers

arXiv.org Artificial Intelligence

We introduce the "Belief State Transformer", a next-token predictor that takes both a prefix and suffix as inputs, with a novel objective of predicting both the next token for the prefix and the previous token for the suffix. The Belief State Transformer effectively learns to solve challenging problems that conventional forward-only transformers struggle with, in a domain-independent fashion. Key to this success is learning a compact belief state that captures all relevant information necessary for accurate predictions. Empirical ablations show that each component of the model is essential in difficult scenarios where standard Transformers fall short. For the task of story writing with known prefixes and suffixes, our approach outperforms the Fill-in-the-Middle method for reaching known goals and demonstrates improved performance even when the goals are unknown. Altogether, the Belief State Transformer enables more efficient goal-conditioned decoding, better test-time inference, and high-quality text representations on small scale problems.


DeMuVGN: Effective Software Defect Prediction Model by Learning Multi-view Software Dependency via Graph Neural Networks

arXiv.org Artificial Intelligence

Software defect prediction (SDP) aims to identify high-risk defect modules in software development, optimizing resource allocation. While previous studies show that dependency network metrics improve defect prediction, most methods focus on code-based dependency graphs, overlooking developer factors. Current metrics, based on handcrafted features like ego and global network metrics, fail to fully capture defect-related information. To address this, we propose DeMuVGN, a defect prediction model that learns multi-view software dependency via graph neural networks. We introduce a Multi-view Software Dependency Graph (MSDG) that integrates data, call, and developer dependencies. DeMuVGN also leverages the Synthetic Minority Oversampling Technique (SMOTE) to address class imbalance and enhance defect module identification. In a case study of eight open-source projects across 20 versions, DeMuVGN demonstrates significant improvements: i) models based on multi-view graphs improve F1 scores by 11.1% to 12.1% over single-view models; ii) DeMuVGN improves F1 scores by 17.4% to 45.8% in within-project contexts and by 17.9% to 41.0% in cross-project contexts. Additionally, DeMuVGN excels in software evolution, showing more improvement in later-stage software versions. Its strong performance across different projects highlights its generalizability. We recommend future research focus on multi-view dependency graphs for defect prediction in both mature and newly developed projects.


Active inference and deep generative modeling for cognitive ultrasound

arXiv.org Artificial Intelligence

Ultrasound (US) has the unique potential to offer access to medical imaging to anyone, everywhere. Devices have become ultra-portable and cost-effective, akin to the stethoscope. Nevertheless US image quality and diagnostic efficacy are still highly operator- and patient-dependent. In difficult-to-image patients, image quality is often insufficient for reliable diagnosis. In this paper, we put forth that US imaging systems can be recast as information-seeking agents that engage in reciprocal interactions with their anatomical environment. Such agents autonomously adapt their transmit-receive sequences to fully personalize imaging and actively maximize information gain in-situ. To that end, we will show that the sequence of pulse-echo experiments that a US system performs can be interpreted as a perception-action loop: the action is the data acquisition, probing tissue with acoustic waves and recording reflections at the detection array, and perception is the inference of the anatomical and or functional state, potentially including associated diagnostic quantities. We then equip systems with a mechanism to actively reduce uncertainty and maximize diagnostic value across a sequence of experiments, treating action and perception jointly using Bayesian inference given generative models of the environment and action-conditional pulse-echo observations. Since the representation capacity of the generative models dictates both the quality of inferred anatomical states and the effectiveness of inferred sequences of future imaging actions, we will be greatly leveraging the enormous advances in deep generative modelling that are currently disrupting many fields and society at large. Finally, we show some examples of cognitive, closed-loop, US systems that perform active beamsteering and adaptive scanline selection, based on deep generative models that track anatomical belief states.


What killed the cat? Towards a logical formalization of curiosity (and suspense, and surprise) in narratives

arXiv.org Artificial Intelligence

Humans tell stories to make sense of the world and communicate their understanding of what happens. Storytelling supposes to be able to sort out which events are worth telling, deciding on a level of detail for describing events, selecting among possible causes the ones which are deemed worth telling. It also supposes to make use of an affective machinery for capturing an audience's attention (emotional contagion, suspense elicitation...). In the act of storytelling, structural and affective phenomena are thus combined with communicative goals in mind. This combination has indeed shown its effectiveness in this respect: the phenomenon of narrative transportation (the experience of being immersed in a story) has been linked to persuasion [27]. The narrative paradigm therefore provides an appropriate framework, in which causal reasoning about the situations narrated [53] is combined with narrative devices to encourage the audience's emotional involvement [51], to study and model how opinion is formed and evolves. Building a framework for reasoning about and unveiling storytelling mechanics could pave the way for intellectual selfdefense supporting tools, enabling citizens to arm themselves against hostile disinformation or influence campaigns. Previous works in structural narratology have studied the way stories are conveyed to their audience and seminal work from (for instance) Genette [25] or Propp [45] have previously served as the backbone inspiration for computational narrative models and storytelling systems [43].