Belief Revision
Multi-Agent Decentralized Belief Propagation on Graphs
We consider the problem of interactive partially observable Markov decision processes (I-POMDPs), where the agents are located at the nodes of a communication network. Specifically, we assume a certain message type for all messages. Moreover, each agent makes individual decisions based on the interactive belief states, the information observed locally and the messages received from its neighbors over the network. Within this setting, the collective goal of the agents is to maximize the globally averaged return over the network through exchanging information with their neighbors. We propose a decentralized belief propagation algorithm for the problem, and prove the convergence of our algorithm. Finally we show multiple applications of our framework. Our work appears to be the first study of decentralized belief propagation algorithm for networked multi-agent I-POMDPs.
Acoustics Based Intent Recognition Using Discovered Phonetic Units for Low Resource Languages
Gupta, Akshat, Li, Xinjian, Rallabandi, Sai Krishna, Black, Alan W
With recent advancements in language technologies, humansare now interacting with technology through speech. To in-crease the reach of these technologies, we need to build suchsystems in local languages. A major bottleneck here are theunderlying data-intensive parts that make up such systems,including automatic speech recognition (ASR) systems thatrequire large amounts of labelled data. With the aim of aidingdevelopment of dialog systems in low resourced languages,we propose a novel acoustics based intent recognition systemthat uses discovered phonetic units for intent classification.The system is made up of two blocks - the first block gen-erates a transcript of discovered phonetic units for the inputaudio, and the second block which performs intent classifi-cation from the generated phonemic transcripts. Our workpresents results for such a system for two languages families- Indic languages and Romance languages, for two differentintent recognition tasks. We also perform multilingual train-ing of our intent classifier and show improved cross-lingualtransfer and performance on an unknown language with zeroresources in the same language family.
Belief change and 3-valued logics: Characterization of 19,683 belief change operators
Borges, Nerio (Universidad Simón Bolívar) | Pino Pérez, Ramón
In this work we introduce a 3-valued logic with modalities, with the aim of having a clear and precise representation of epistemic states, thus the formulas of this logic will be our epistemic states. Indeed, these formulas are identified with ranking functions of 3 values, a generalization of total preorders of three levels. In this framework we analyze some types of changes of these epistemic structures and give syntactical characterizations of them in the introduced logic. In particular, we introduce and study carefully a new operator called Cautious Improvement operator. We also characterize all operators that are definable in this framework.
A Feedback Scheme to Reorder a Multi-Agent Execution Schedule by Persistently Optimizing a Switchable Action Dependency Graph
Berndt, Alexander, Van Duijkeren, Niels, Palmieri, Luigi, Keviczky, Tamas
In this paper we consider multiple Automated Guided Vehicles (AGVs) navigating a common workspace to fulfill various intralogistics tasks, typically formulated as the Multi-Agent Path Finding (MAPF) problem. To keep plan execution deadlock-free, one approach is to construct an Action Dependency Graph (ADG) which encodes the ordering of AGVs as they proceed along their routes. Using this method, delayed AGVs occasionally require others to wait for them at intersections, thereby affecting the plan execution efficiency. If the workspace is shared by dynamic obstacles such as humans or third party robots, AGVs can experience large delays. A common mitigation approach is to re-solve the MAPF using the current, delayed AGV positions. However, solving the MAPF is time-consuming, making this approach inefficient, especially for large AGV teams. In this work, we present an online method to repeatedly modify a given acyclic ADG to minimize route completion times of each AGV. Our approach persistently maintains an acyclic ADG, necessary for deadlock-free plan execution. We evaluate the approach by considering simulations with random disturbances on the execution and show faster route completion times compared to the baseline ADG-based execution management approach.
On the use of evidence theory in belief base revision
Ktari, Raïda, Boujelben, Mohamed Ayman
This paper deals with belief base revision that is a form of belief change consisting of the incorporation of new facts into an agent's beliefs represented by a finite set of propositional formulas. In the aim to guarantee more reliability and rationality for real applications while performing revision, we propose the idea of credible belief base revision yielding to define two new formula-based revision operators using the suitable tools offered by evidence theory. These operators, uniformly presented in the same spirit of others in [9], stem from consistent subbases maximal with respect to credibility instead of set inclusion and cardinality. Moreover, in between these two extremes operators, evidence theory let us shed some light on a compromise operator avoiding losing initial beliefs to the maximum extent possible. Its idea captures maximal consistent sets stemming from all possible intersections of maximal consistent subbases. An illustration of all these operators and a comparison with others are inverstigated by examples.
Recursive Experts: An Efficient Optimal Mixture of Learning Systems in Dynamic Environments
Sequential learning systems are used in a wide variety of problems from decision making to optimization, where they provide a 'belief' (opinion) to nature, and then update this belief based on the feedback (result) to minimize (or maximize) some cost or loss (conversely, utility or gain). The goal is to reach an objective by exploiting the temporal relation inherent to the nature's feedback (state). By exploiting this relation, specific learning systems can be designed that perform asymptotically optimal for various applications. However, if the framework of the problem is not stationary, i.e., the nature's state sometimes changes arbitrarily, the past cumulative belief revision done by the system may become useless and the system may fail if it lacks adaptivity. While this adaptivity can be directly implemented in specific cases (e.g., convex optimization), it is mostly not straightforward for general learning tasks. To this end, we propose an efficient optimal mixture framework for general sequential learning systems, which we call the recursive experts for dynamic environments. For this purpose, we design hyper-experts that incorporate the learning systems at our disposal and recursively merge in a specific way to achieve minimax optimal regret bounds up to constant factors. The multiplicative increases in computational complexity from the initial system to our adaptive system are only logarithmic-in-time factors.
A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning
Zhang, Yichi, Ou, Zhijian, Wang, Huixin, Feng, Junlan
Structured belief states are crucial for user goal tracking and database query in task-oriented dialog systems. However, training belief trackers often requires expensive turn-level annotations of every user utterance. In this paper we aim at alleviating the reliance on belief state labels in building end-to-end dialog systems, by leveraging unlabeled dialog data towards semi-supervised learning. We propose a probabilistic dialog model, called the LAtent BElief State (LABES) model, where belief states are represented as discrete latent variables and jointly modeled with system responses given user inputs. Such latent variable modeling enables us to develop semi-supervised learning under the principled variational learning framework. Furthermore, we introduce LABES-S2S, which is a copy-augmented Seq2Seq model instantiation of LABES. In supervised experiments, LABES-S2S obtains strong results on three benchmark datasets of different scales. In utilizing unlabeled dialog data, semi-supervised LABES-S2S significantly outperforms both supervised-only and semi-supervised baselines. Remarkably, we can reduce the annotation demands to 50% without performance loss on MultiWOZ.
Incompatibilities Between Iterated and Relevance-Sensitive Belief Revision
Aravanis, Theofanis (University of Patras) | Peppas, Pavlos (University of Patras, Greece) | Williams, Mary-Anne (University of Technology Sydney, Australia)
The AGM paradigm for belief change, as originally introduced by Alchourrón, Gärdenfors and Makinson, lacks any guidelines for the process of iterated revision. One of the most influential work addressing this problem is Darwiche and Pearl's approach (DP approach, for short), which, despite its well-documented shortcomings, remains to this date the most dominant. In this article, we make further observations on the DP approach. In particular, we prove that the DP postulates are, in a strong sense, inconsistent with Parikh's relevance-sensitive axiom (P), extending previous initial conflicts. Immediate consequences of this result are that an entire class of intuitive revision operators, which includes Dalal's operator, violates the DP postulates, as well as that the Independence postulate and Spohn's conditionalization are inconsistent with axiom (P). The whole study, essentially, indicates that two fundamental aspects of the revision process, namely, iteration and relevance, are in deep conflict, and opens the discussion for a potential reconciliation towards a comprehensive formal framework for knowledge dynamics.
On a plausible concept-wise multipreference semantics and its relations with self-organising maps
Giordano, Laura, Gliozzi, Valentina, Dupré, Daniele Theseider
In this paper we describe a concept-wise multi-preference semantics for description logic which has its root in the preferential approach for modeling defeasible reasoning in knowledge representation. We argue that this proposal, beside satisfying some desired properties, such as KLM postulates, and avoiding the drowning problem, also defines a plausible notion of semantics. We motivate the plausibility of the concept-wise multi-preference semantics by developing a logical semantics of self-organising maps, which have been proposed as possible candidates to explain the psychological mechanisms underlying category generalisation, in terms of multi-preference interpretations.
Compact Belief State Representation for Task Planning
Safronov, Evgenii, Colledanchise, Michele, Natale, Lorenzo
Task planning in a probabilistic belief state domains allows generating complex and robust execution policies in those domains affected by state uncertainty. The performance of a task planner relies on the belief state representation. However, current belief state representation becomes easily intractable as the number of variables and execution time grows. To address this problem, we developed a novel belief state representation based on cartesian product and union operations over belief substates. These two operations and single variable assignment nodes form And-Or directed acyclic graph of Belief State (AOBS). We show how to apply actions with probabilistic outcomes and measure the probability of conditions holding over belief state. We evaluated AOBS performance in simulated forward state space exploration. We compared the size of AOBS with the size of Binary Decision Diagrams (BDD) that were previously used to represent belief state. We show that AOBS representation is not only much more compact than a full belief state but it also scales better than BDD for most of the cases.