Belief Revision
van Zee
The AGM theory of belief revision is based on propositional belief sets. In this paper we develop a logic for revision of temporal belief bases, containing expressions about temporal propositions (tomorrow it will rain), possibility (it may rain tomorrow), actions (the robot enters the room) and pre- and post-conditions of these actions. We prove the Katsuno-Mendelzon and the Darwiche-Pearl representation theorems by restricting the logic to formulas representing beliefs up to certain time. We illustrate our belief change model through several examples.
Turán
A formal framework is given for the postulate characterizability of a class of belief revision operators, obtained from a class of partial preorders using minimization. It is shown that for classes of posets characterizability is equivalent to a special kind of definability in monadic second-order logic, which turns out to be incomparable to first-order definability. Several examples are given of characterizable and non-characterizable classes. For example, it is shown that the class of revision operators obtained from posets which are not total is not characterizable.
Oveisi
The AGM paradigm of belief change studies the dynamics of belief states in light of new information. Finding, or even approximating, dependent or relevant beliefs to a change is valuable because, for example, it can narrow the set of beliefs considered during belief change operations. Gärdenfors' preservation criterion (GPC) suggests that formulas independent of a belief change should remain intact. GPC allows to build dependence relations that are theoretically linked with belief change. Such dependence relations can in turn be used as a theoretical benchmark against which to evaluate other approximate dependence or relevance relations.
Chhogyal
When a belief state is represented as a probability function P, the resulting belief state of the contraction of a sentence (belief) from the original belief state P can be given by the probabilistic version of the Harper Identity. Specifically, the result of contracting P by a sentence h is taken to be the mixture of two states: the original state P, and the resultant state P* h of revising P by the negation of h. What proportion of P and P* h should be used in this mixture remains an open issue and is largely ignored in literature. In this paper, we first classify different belief states by their stability, and then exploit the quantitative nature of probabilities and combine it with the basic ideas of argumentation theory to determine the mixture proportions. We, therefore, propose a novel approach to probabilistic belief contraction using argumentation.
Laaziz
Belief revision consists in modifying an epistemic state in the light of a new information. In this paper, we focus on the so-called multiple iterated belief revision process called c-revision. Epistemic states are represented in terms of penalty knowledge bases. The input is also a set of consistent weighted formulas. We show that crevision has a very natural counterpart in penalty logic.
Sezgin
Probability kinematics is a leading paradigm in probabilistic belief change. It is based on the idea that conditional beliefs should be independent from changes of their antecedents' probabilities. In this paper, we propose a re-interpretation of this paradigm for Spohn's ranking functions which we call Generalized Ranking Kinematics as a new principle for iterated belief revision of ranking functions by sets of conditional beliefs. This general setting also covers iterated revision by propositional beliefs. We then present c-revisions as belief change methodology that satisfies Generalized Ranking Kinematics.
A Robot Web for Distributed Many-Device Localisation
Murai, Riku, Ortiz, Joseph, Saeedi, Sajad, Kelly, Paul H. J., Davison, Andrew J.
We show that a distributed network of robots or other devices which make measurements of each other can collaborate to globally localise via efficient ad-hoc peer to peer communication. Our Robot Web solution is based on Gaussian Belief Propagation on the fundamental non-linear factor graph describing the probabilistic structure of all of the observations robots make internally or of each other, and is flexible for any type of robot, motion or sensor. We define a simple and efficient communication protocol which can be implemented by the publishing and reading of web pages or other asynchronous communication technologies. We show in simulations with up to 1000 robots interacting in arbitrary patterns that our solution convergently achieves global accuracy as accurate as a centralised non-linear factor graph solver while operating with high distributed efficiency of computation and communication. Via the use of robust factors in GBP, our method is tolerant to a high percentage of faults in sensor measurements or dropped communication packets.
A Conditional Perspective on the Logic of Iterated Belief Contraction
Sauerwald, Kai, Kern-Isberner, Gabriele, Beierle, Christoph
In this article, we consider iteration principles for contraction, with the goal of identifying properties for contractions that respect conditional beliefs. Therefore, we investigate and evaluate four groups of iteration principles for contraction which consider the dynamics of conditional beliefs. For all these principles, we provide semantic characterization theorems and provide formulations by postulates which highlight how the change of beliefs and of conditional beliefs is constrained, whenever that is possible. The first group is similar to the syntactic Darwiche-Pearl postulates. As a second group, we consider semantic postulates for iteration of contraction by Chopra, Ghose, Meyer and Wong, and by Konieczny and Pino P\'erez, respectively, and we provide novel syntactic counterparts. Third, we propose a contraction analogue of the independence condition by Jin and Thielscher. For the fourth group, we consider natural and moderate contraction by Nayak. Methodically, we make use of conditionals for contractions, so-called contractionals and furthermore, we propose and employ the novel notion of $ \alpha $-equivalence for formulating some of the new postulates.
Belief Revision in Sentential Decision Diagrams
Mattei, Lilith, Facchini, Alessandro, Antonucci, Alessandro
Belief revision is the task of modifying a knowledge base when new information becomes available, while also respecting a number of desirable properties. Classical belief revision schemes have been already specialised to \emph{binary decision diagrams} (BDDs), the classical formalism to compactly represent propositional knowledge. These results also apply to \emph{ordered} BDDs (OBDDs), a special class of BDDs, designed to guarantee canonicity. Yet, those revisions cannot be applied to \emph{sentential decision diagrams} (SDDs), a typically more compact but still canonical class of Boolean circuits, which generalizes OBDDs, while not being a subclass of BDDs. Here we fill this gap by deriving a general revision algorithm for SDDs based on a syntactic characterisation of Dalal revision. A specialised procedure for DNFs is also presented. Preliminary experiments performed with randomly generated knowledge bases show the advantages of directly perform revision within SDD formalism.
The importance of intent recognition in speech tech for kids
Intent recognition is the natural language understanding (NLU) task of determining what general goal a user is trying to accomplish (e.g., finding out the weather forecast, booking a table at a restaurant, or adding a song to a playlist). What's tricky is there are many ways users may express an intent. For example, "Turn on the light" and "It's too dark in here; make it brighter" are just two of a plethora of ways of expressing the same "Light on" intent to a smart home device, but the two utterances are completely different on the surface in terms of syntax and vocabulary. A good intent recognizer should map both of those utterances to the same intent. More generally, a well-trained recognizer can account for the many ways people may express their goals in natural language and map them to the correct intent, which then triggers an action or response.