Belief Revision
Neural Enhanced Belief Propagation for Multiobject Tracking
Liang, Mingchao, Meyer, Florian
Algorithmic solutions for multi-object tracking (MOT) are a key enabler for applications in autonomous navigation and applied ocean sciences. State-of-the-art MOT methods fully rely on a statistical model and typically use preprocessed sensor data as measurements. In particular, measurements are produced by a detector that extracts potential object locations from the raw sensor data collected for a discrete time step. This preparatory processing step reduces data flow and computational complexity but may result in a loss of information. State-of-the-art Bayesian MOT methods that are based on belief propagation (BP) systematically exploit graph structures of the statistical model to reduce computational complexity and improve scalability. However, as a fully model-based approach, BP can only provide suboptimal estimates when there is a mismatch between the statistical model and the true data-generating process. Existing BP-based MOT methods can further only make use of preprocessed measurements. In this paper, we introduce a variant of BP that combines model-based with data-driven MOT. The proposed neural enhanced belief propagation (NEBP) method complements the statistical model of BP by information learned from raw sensor data. This approach conjectures that the learned information can reduce model mismatch and thus improve data association and false alarm rejection. Our NEBP method improves tracking performance compared to model-based methods. At the same time, it inherits the advantages of BP-based MOT, i.e., it scales only quadratically in the number of objects, and it can thus generate and maintain a large number of object tracks. We evaluate the performance of our NEBP approach for MOT on the nuScenes autonomous driving dataset and demonstrate that it has state-of-the-art performance.
Structurally aware 3D gas distribution mapping using belief propagation: a real-time algorithm for robotic deployment
Rhodes, Callum, Liu, Cunjia, Chen, Wen-Hua
This paper proposes a new 3D gas distribution mapping technique based on the local message passing of Gaussian belief propagation that is capable of resolving in real time, concentration estimates in 3D space whilst accounting for the obstacle information within the scenario, the first of its kind in the literature. The gas mapping problem is formulated as a 3D factor graph of Gaussian potentials, the connections of which are conditioned on local occupancy values. The Gaussian belief propagation framework is introduced as the solver and a new hybrid message scheduler is introduced to increase the rate of convergence. The factor graph problem is then redesigned as a dynamically expanding inference task, coupling the information of consecutive gas measurements with local spatial structure obtained by the robot. The proposed algorithm is compared to the state of the art methods in 2D and 3D simulations and is found to resolve distribution maps orders of magnitude quicker than typical direct solvers. The proposed framework is then deployed for the first time onboard a ground robot in a 3D mapping and exploration task. The system is shown to be able to resolve multiple sensor inputs and output high resolution 3D gas distribution maps in a GPS denied cluttered scenario in real time. This online inference of complicated plume structures provides a new layer of contextual information over its 2D counterparts and enables autonomous systems to take advantage of real time estimates to inform potential next best sampling locations.
Tua Tagovailoa 'not afraid' of Super Bowl talk after NFL trade deadline: 'Full belief that we are capable'
Fox News Flash top headlines are here. Check out what's clicking on Foxnews.com. The Miami Dolphins have been revamping their offense under first-year head coach Mike McDaniel. On Tuesday, they made two deals that have many believing this could be a Super Bowl contending team. Tua Tagovailoa is one of the believers.
On Uncertainty in Deep State Space Models for Model-Based Reinforcement Learning
Becker, Philipp, Neumann, Gerhard
Improved state space models, such as Recurrent State Space Models (RSSMs), are a key factor behind recent advances in model-based reinforcement learning (RL). Yet, despite their empirical success, many of the underlying design choices are not well understood. We show that RSSMs use a suboptimal inference scheme and that models trained using this inference overestimate the aleatoric uncertainty of the ground truth system. We find this overestimation implicitly regularizes RSSMs and allows them to succeed in model-based RL. We postulate that this implicit regularization fulfills the same functionality as explicitly modeling epistemic uncertainty, which is crucial for many other model-based RL approaches. Yet, overestimating aleatoric uncertainty can also impair performance in cases where accurately estimating it matters, e.g., when we have to deal with occlusions, missing observations, or fusing sensor modalities at different frequencies. Moreover, the implicit regularization is a side-effect of the inference scheme and not the result of a rigorous, principled formulation, which renders analyzing or improving RSSMs difficult. Thus, we propose an alternative approach building on well-understood components for modeling aleatoric and epistemic uncertainty, dubbed Variational Recurrent Kalman Network (VRKN). This approach uses Kalman updates for exact smoothing inference in a latent space and Monte Carlo Dropout to model epistemic uncertainty. Due to the Kalman updates, the VRKN can naturally handle missing observations or sensor fusion problems with varying numbers of observations per time step. Our experiments show that using the VRKN instead of the RSSM improves performance in tasks where appropriately capturing aleatoric uncertainty is crucial while matching it in the deterministic standard benchmarks.
Probabilistic modeling of rational communication with conditionals
Grusdt, Britta, Lassiter, Daniel, Franke, Michael
While a large body of work has scrutinized the meaning of conditional sentences, considerably less attention has been paid to formal models of their pragmatic use and interpretation. Here, we take a probabilistic approach to pragmatic reasoning about indicative conditionals which flexibly integrates gradient beliefs about richly structured world states. We model listeners' update of their prior beliefs about the causal structure of the world and the joint probabilities of the consequent and antecedent based on assumptions about the speaker's utterance production protocol. We show that, when supplied with natural contextual assumptions, our model uniformly explains a number of inferences attested in the literature, including epistemic inferences, conditional perfection and the dependency between antecedent and consequent of a conditional. We argue that this approach also helps explain three puzzles introduced by Douven (2012) about updating with conditionals: depending on the utterance context, the listener's belief in the antecedent may increase, decrease or remain unchanged.
MIntRec: A New Dataset for Multimodal Intent Recognition
Zhang, Hanlei, Xu, Hua, Wang, Xin, Zhou, Qianrui, Zhao, Shaojie, Teng, Jiayan
Multimodal intent recognition is a significant task for understanding human language in real-world multimodal scenes. Most existing intent recognition methods have limitations in leveraging the multimodal information due to the restrictions of the benchmark datasets with only text information. This paper introduces a novel dataset for multimodal intent recognition (MIntRec) to address this issue. It formulates coarse-grained and fine-grained intent taxonomies based on the data collected from the TV series Superstore. The dataset consists of 2,224 high-quality samples with text, video, and audio modalities and has multimodal annotations among twenty intent categories. Furthermore, we provide annotated bounding boxes of speakers in each video segment and achieve an automatic process for speaker annotation. MIntRec is helpful for researchers to mine relationships between different modalities to enhance the capability of intent recognition. We extract features from each modality and model cross-modal interactions by adapting three powerful multimodal fusion methods to build baselines. Extensive experiments show that employing the non-verbal modalities achieves substantial improvements compared with the text-only modality, demonstrating the effectiveness of using multimodal information for intent recognition. The gap between the best-performing methods and humans indicates the challenge and importance of this task for the community. The full dataset and codes are available for use at https://github.com/thuiar/MIntRec.
A taxonomy of surprise definitions
Modirshanechi, Alireza, Brea, Johanni, Gerstner, Wulfram
Surprising events trigger measurable brain activity and influence human behavior by affecting learning, memory, and decision-making. Currently there is, however, no consensus on the definition of surprise. Here we identify 18 mathematical definitions of surprise in a unifying framework. We first propose a technical classification of these definitions into three groups based on their dependence on an agent's belief, show how they relate to each other, and prove under what conditions they are indistinguishable. Going beyond this technical analysis, we propose a taxonomy of surprise definitions and classify them into four conceptual categories based on the quantity they measure: (i) 'prediction surprise' measures a mismatch between a prediction and an observation; (ii) 'change-point detection surprise' measures the probability of a change in the environment; (iii) 'confidence-corrected surprise' explicitly accounts for the effect of confidence; and (iv) 'information gain surprise' measures the belief-update upon a new observation. The taxonomy poses the foundation for principled studies of the functional roles and physiological signatures of surprise in the brain.
Goal Recognition as Reinforcement Learning
Amado, Leonardo Rosa, Mirsky, Reuth, Meneguzzi, Felipe
Most approaches for goal recognition rely on specifications of the possible dynamics of the actor in the environment when pursuing a goal. These specifications suffer from two key issues. First, encoding these dynamics requires careful design by a domain expert, which is often not robust to noise at recognition time. Second, existing approaches often need costly real-time computations to reason about the likelihood of each potential goal. In this paper, we develop a framework that combines model-free reinforcement learning and goal recognition to alleviate the need for careful, manual domain design, and the need for costly online executions. This framework consists of two main stages: Offline learning of policies or utility functions for each potential goal, and online inference. We provide a first instance of this framework using tabular Q-learning for the learning stage, as well as three measures that can be used to perform the inference stage. The resulting instantiation achieves state-of-the-art performance against goal recognizers on standard evaluation domains and superior performance in noisy environments.
Inference with System W Satisfies Syntax Splitting
Haldimann, Jonas, Beierle, Christoph
In this paper, we investigate inductive inference with system W from conditional belief bases with respect to syntax splitting. The concept of syntax splitting for inductive inference states that inferences about independent parts of the signature should not affect each other. This was captured in work by Kern-Isberner, Beierle, and Brewka in the form of postulates for inductive inference operators expressing syntax splitting as a combination of relevance and independence; it was also shown that c-inference fulfils syntax splitting, while system P inference and system Z both fail to satisfy it. System W is a recently introduced inference system for nonmonotonic reasoning that captures and properly extends system Z as well as c-inference. We show that system W fulfils the syntax splitting postulates for inductive inference operators by showing that it satisfies the required properties of relevance and independence. This makes system W another inference operator besides c-inference that fully complies with syntax splitting, while in contrast to c-inference, also extending rational closure.
Ma
Belief revision studies strategies about how agents revise their belief states when receiving new evidence. Both in classical belief revision and in epistemic revision, a new input is either in the form of a (weighted) propositional formula or a total pre-order (where the total pre-order is considered as a whole). However, in some real-world applications, a new input can be a partial pre-order where each unit that constitutes the partial pre-order is important and should be considered individually. To address this issue, in this paper, we study how a partial pre-order representing the prior epistemic state can be revised by another partial pre-order (the new input) from a different perspective, where the revision is conducted recursively on the individual units of partial pre-orders. We propose different revision operators (rules), dubbed the extension, match, inner and outer revision operators, from different revision points of view. We also analyze several properties for these operators.