Belief Revision
Learning in Deep Factor Graphs with Gaussian Belief Propagation
Nabarro, Seth, van der Wilk, Mark, Davison, Andrew J
We propose an approach to do learning in Gaussian factor graphs. We treat all relevant quantities (inputs, outputs, parameters, latents) as random variables in a graphical model, and view both training and prediction as inference problems with different observed nodes. Our experiments show that these problems can be efficiently solved with belief propagation (BP), whose updates are inherently local, presenting exciting opportunities for distributed and asynchronous training. Our approach can be scaled to deep networks and provides a natural means to do continual learning: use the BP-estimated parameter marginals of the current task as parameter priors for the next. On a video denoising task we demonstrate the benefit of learnable parameters over a classical factor graph approach and we show encouraging performance of deep factor graphs for continual image classification on MNIST.
Asking More Informative Questions for Grounded Retrieval
Keh, Sedrick, Chiu, Justin T., Fried, Daniel
When a model is trying to gather information in an interactive setting, it benefits from asking informative questions. However, in the case of a grounded multi-turn image identification task, previous studies have been constrained to polar yes/no questions, limiting how much information the model can gain in a single turn. We present an approach that formulates more informative, open-ended questions. In doing so, we discover that off-the-shelf visual question answering (VQA) models often make presupposition errors, which standard information gain question selection methods fail to account for. To address this issue, we propose a method that can incorporate presupposition handling into both question selection and belief updates. Specifically, we use a two-stage process, where the model first filters out images which are irrelevant to a given question, then updates its beliefs about which image the user intends. Through self-play and human evaluations, we show that our method is successful in asking informative open-ended questions, increasing accuracy over the past state-of-the-art by 14%, while resulting in 48% more efficient games in human evaluations.
Planning Landmark Based Goal Recognition Revisited: Does Using Initial State Landmarks Make Sense?
Wilken, Nils, Cohausz, Lea, Bartelt, Christian, Stuckenschmidt, Heiner
Goal recognition is an important problem in many application domains (e.g., pervasive computing, intrusion detection, computer games, etc.). In many application scenarios, it is important that goal recognition algorithms can recognize goals of an observed agent as fast as possible. However, many early approaches in the area of Plan Recognition As Planning, require quite large amounts of computation time to calculate a solution. Mainly to address this issue, recently, Pereira et al. [11] developed an approach that is based on planning landmarks and is much more computationally efficient than previous approaches. However, the approach, as proposed by Pereira et al., also uses trivial landmarks (i.e., facts that are part of the initial state and goal description are landmarks by definition). In this paper, we show that it does not provide any benefit to use landmarks that are part of the initial state in a planning landmark based goal recognition approach. The empirical results show that omitting initial state landmarks for goal recognition improves goal recognition performance.
RDGCN: Reinforced Dependency Graph Convolutional Network for Aspect-based Sentiment Analysis
Zhao, Xusheng, Peng, Hao, Dai, Qiong, Bai, Xu, Peng, Huailiang, Liu, Yanbing, Guo, Qinglang, Yu, Philip S.
Aspect-based sentiment analysis (ABSA) is dedicated to forecasting the sentiment polarity of aspect terms within sentences. Employing graph neural networks to capture structural patterns from syntactic dependency parsing has been confirmed as an effective approach for boosting ABSA. In most works, the topology of dependency trees or dependency-based attention coefficients is often loosely regarded as edges between aspects and opinions, which can result in insufficient and ambiguous syntactic utilization. To address these problems, we propose a new reinforced dependency graph convolutional network (RDGCN) that improves the importance calculation of dependencies in both distance and type views. Initially, we propose an importance calculation criterion for the minimum distances over dependency trees. Under the criterion, we design a distance-importance function that leverages reinforcement learning for weight distribution search and dissimilarity control. Since dependency types often do not have explicit syntax like tree distances, we use global attention and mask mechanisms to design type-importance functions. Finally, we merge these weights and implement feature aggregation and classification. Comprehensive experiments on three popular datasets demonstrate the effectiveness of the criterion and importance functions. RDGCN outperforms state-of-the-art GNN-based baselines in all validations.
Approximate inference of marginals using the IBIA framework
Bathla, Shivani, Vasudevan, Vinita
Exact inference of marginals in probabilistic graphical models (PGM) is known to be intractable, necessitating the use of approximate methods. Most of the existing variational techniques perform iterative message passing in loopy graphs which is slow to converge for many benchmarks. In this paper, we propose a new algorithm for marginal inference that is based on the incremental build-infer-approximate (IBIA) paradigm. Our algorithm converts the PGM into a sequence of linked clique tree forests (SLCTF) with bounded clique sizes, and then uses a heuristic belief update algorithm to infer the marginals. For the special case of Bayesian networks, we show that if the incremental build step in IBIA uses the topological order of variables then (a) the prior marginals are consistent in all CTFs in the SLCTF and (b) the posterior marginals are consistent once all evidence variables are added to the SLCTF. In our approach, the belief propagation step is non-iterative and the accuracy-complexity trade-off is controlled using user-defined clique size bounds. Results for several benchmark sets from recent UAI competitions show that our method gives either better or comparable accuracy than existing variational and sampling based methods, with smaller runtimes.
An Investigation of Darwiche and Pearl's Postulates for Iterated Belief Update
Guan, Quanlong, Zhu, Tong, Fang, Liangda, Qiu, Junming, Lai, Zhao-Rong, Luo, Weiqi
Belief revision and update, two significant types of belief change, both focus on how an agent modify her beliefs in presence of new information. The most striking difference between them is that the former studies the change of beliefs in a static world while the latter concentrates on a dynamically-changing world. The famous AGM and KM postulates were proposed to capture rational belief revision and update, respectively. However, both of them are too permissive to exclude some unreasonable changes in the iteration. In response to this weakness, the DP postulates and its extensions for iterated belief revision were presented. Furthermore, Rodrigues integrated these postulates in belief update. Unfortunately, his approach does not meet the basic requirement of iterated belief update. This paper is intended to solve this problem of Rodrigues's approach. Firstly, we present a modification of the original KM postulates based on belief states. Subsequently, we migrate several well-known postulates for iterated belief revision to iterated belief update. Moreover, we provide the exact semantic characterizations based on partial preorders for each of the proposed postulates. Finally, we analyze the compatibility between the above iterated postulates and the KM postulates for belief update.
Continual Generalized Intent Discovery: Marching Towards Dynamic and Open-world Intent Recognition
Song, Xiaoshuai, Mou, Yutao, He, Keqing, Qiu, Yueyan, Wang, Pei, Xu, Weiran
In a practical dialogue system, users may input out-of-domain (OOD) queries. The Generalized Intent Discovery (GID) task aims to discover OOD intents from OOD queries and extend them to the in-domain (IND) classifier. However, GID only considers one stage of OOD learning, and needs to utilize the data in all previous stages for joint training, which limits its wide application in reality. In this paper, we introduce a new task, Continual Generalized Intent Discovery (CGID), which aims to continuously and automatically discover OOD intents from dynamic OOD data streams and then incrementally add them to the classifier with almost no previous data, thus moving towards dynamic intent recognition in an open world. Next, we propose a method called Prototype-guided Learning with Replay and Distillation (PLRD) for CGID, which bootstraps new intent discovery through class prototypes and balances new and old intents through data replay and feature distillation. Finally, we conduct detailed experiments and analysis to verify the effectiveness of PLRD and understand the key challenges of CGID for future research.
Footprints found at ancient lake in New Mexico challenge old belief of first humans in Americas
Fox News Flash top headlines are here. Check out what's clicking on Foxnews.com. The oldest direct evidence of human presence in the Americas are likely fossilized human footprints found in New Mexico, challenging once-conventional wisdom regarding humans migrating to the New World from Russia roughly 15,000 years ago, new research confirms. The new discovery suggests that the first people actually arrived in the Americas much earlier than previously believed. According to research published Thursday in the journal Science, footprints discovered at the edge of an ancient lake bed in White Sands National Park date back to between 21,000 and 23,000 years ago.
Local Max-Entropy and Free Energy Principles, Belief Diffusions and their Singularities
A comprehensive picture of three Bethe-Kikuchi variational principles including their relationship to belief propagation (BP) algorithms on hypergraphs is given. The structure of BP equations is generalized to define continuous-time diffusions, solving localized versions of the max-entropy principle (A), the variational free energy principle (B), and a less usual equilibrium free energy principle (C), Legendre dual to A. Both critical points of Bethe-Kikuchi functionals and stationary beliefs are shown to lie at the non-linear intersection of two constraint surfaces, enforcing energy conservation and marginal consistency respectively. The hypersurface of singular beliefs, accross which equilibria become unstable as the constraint surfaces meet tangentially, is described by polynomial equations in the convex polytope of consistent beliefs. This polynomial is expressed by a loop series expansion for graphs of binary variables.
Set-Type Belief Propagation with Applications to Poisson Multi-Bernoulli SLAM
Kim, Hyowon, García-Fernández, Angel F., Ge, Yu, Xia, Yuxuan, Svensson, Lennart, Wymeersch, Henk
Belief propagation (BP) is a useful probabilistic inference algorithm for efficiently computing approximate marginal probability densities of random variables. However, in its standard form, BP is only applicable to the vector-type random variables with a fixed and known number of vector elements, while certain applications rely on RFSs with an unknown number of vector elements. In this paper, we develop BP rules for factor graphs defined on sequences of RFSs where each RFS has an unknown number of elements, with the intention of deriving novel inference methods for RFSs. Furthermore, we show that vector-type BP is a special case of set-type BP, where each RFS follows the Bernoulli process. To demonstrate the validity of developed set-type BP, we apply it to the PMB filter for SLAM, which naturally leads to new set-type BP-mapping, SLAM, multi-target tracking, and simultaneous localization and tracking filters. Finally, we explore the relationships between the vector-type BP and the proposed set-type BP PMB-SLAM implementations and show a performance gain of the proposed set-type BP PMB-SLAM filter in comparison with the vector-type BP-SLAM filter.