Belief Revision


Shaping Belief States with Generative Environment Models for RL

Neural Information Processing Systems

When agents interact with a complex environment, they must form and maintain beliefs about the relevant aspects of that environment. We propose a way to efficiently train expressive generative models in complex environments. We show that a predictive algorithm with an expressive generative model can form stable belief-states in visually rich and dynamic 3D environments. More precisely, we show that the learned representation captures the layout of the environment as well as the position and orientation of the agent. Our experiments show that the model substantially improves data-efficiency on a number of reinforcement learning (RL) tasks compared with strong model-free baseline agents.


Fast Convergence of Belief Propagation to Global Optima: Beyond Correlation Decay

Neural Information Processing Systems

Belief propagation is a fundamental message-passing algorithm for probabilistic reasoning and inference in graphical models. While it is known to be exact on trees, in most applications belief propagation is run on graphs with cycles. Understanding the behavior of loopy'' belief propagation has been a major challenge for researchers in machine learning, and several positive convergence results for BP are known under strong assumptions which imply the underlying graphical model exhibits decay of correlations. We show that under a natural initialization, BP converges quickly to the global optimum of the Bethe free energy for Ising models on arbitrary graphs, as long as the Ising model is \emph{ferromagnetic} (i.e. This holds even though such models can exhibit long range correlations and may have multiple suboptimal BP fixed points.


Neural Enhanced Belief Propagation on Factor Graphs

arXiv.org Machine Learning

A graphical model is a structured representation of locally dependent random variables. A traditional method to reason over these random variables is to perform inference using belief propagation. When provided with the true data generating process, belief propagation can infer the optimal posterior probability estimates in tree structured factor graphs. However, in many cases we may only have access to a poor approximation of the data generating process, or we may face loops in the factor graph, leading to suboptimal estimates. In this work we first extend graph neural networks to factor graphs (FG-GNN). We then propose a new hybrid model that runs conjointly a FG-GNN with belief propagation. The FG-GNN receives as input messages from belief propagation at every inference iteration and outputs a corrected version of them. As a result, we obtain a more accurate algorithm that combines the benefits of both belief propagation and graph neural networks. We apply our ideas to error correction decoding tasks, and we show that our algorithm can outperform belief propagation for LDPC codes on bursty channels.


Relaxed Scheduling for Scalable Belief Propagation

arXiv.org Artificial Intelligence

The ability to leverage large-scale hardware parallelism has been one of the key enablers of the accelerated recent progress in machine learning. Consequently, there has been considerable effort invested into developing efficient parallel variants of classic machine learning algorithms. However, despite the wealth of knowledge on parallelization, some classic machine learning algorithms often prove hard to parallelize efficiently while maintaining convergence. In this paper, we focus on efficient parallel algorithms for the key machine learning task of inference on graphical models, in particular on the fundamental belief propagation algorithm. We address the challenge of efficiently parallelizing this classic paradigm by showing how to leverage scalable relaxed schedulers in this context. We present an extensive empirical study, showing that our approach outperforms previous parallel belief propagation implementations both in terms of scalability and in terms of wall-clock convergence time, on a range of practical applications.


Linear programming analysis of loopy belief propagation for weighted matching

Neural Information Processing Systems

Loopy belief propagation has been employed in a wide variety of applications with great empirical success, but it comes with few theoretical guarantees. In this paper we investigate the use of the max-product form of belief propagation for weighted matching problems on general graphs. We show that max-product converges to the correct answer if the linear programming (LP) relaxation of the weighted matching problem is tight and does not converge if the LP relaxation is loose. This provides an exact characterization of max-product performance and reveals connections to the widely used optimization technique of LP relaxation. In addition, we demonstrate that max-product is effective in solving practical weighted matching problems in a distributed fashion by applying it to the problem of self-organization in sensor networks.


Graph Zeta Function in the Bethe Free Energy and Loopy Belief Propagation

Neural Information Processing Systems

We propose a new approach to the analysis of Loopy Belief Propagation (LBP) by establishing a formula that connects the Hessian of the Bethe free energy with the edge zeta function. The formula has a number of theoretical implications on LBP. It is applied to give a sufficient condition that the Hessian of the Bethe free energy is positive definite, which shows non-convexity for graphs with multiple cycles. The formula clarifies the relation between the local stability of a fixed point of LBP and local minima of the Bethe free energy. We also propose a new approach to the uniqueness of LBP fixed point, and show various conditions of uniqueness.


Monte-Carlo Planning in Large POMDPs

Neural Information Processing Systems

This paper introduces a Monte-Carlo algorithm for online planning in large POMDPs. The algorithm combines a Monte-Carlo update of the agent's belief state with a Monte-Carlo tree search from the current belief state. The new algorithm, POMCP, has two important properties. First, Monte-Carlo sampling is used to break the curse of dimensionality both during belief state updates and during planning. Second, only a black box simulator of the POMDP is required, rather than explicit probability distributions.


Bayesian Belief Polarization

Neural Information Processing Systems

Situations in which people with opposing prior beliefs observe the same evidence and then strengthen those existing beliefs are frequently offered as evidence of human irrationality. This phenomenon, termed belief polarization, is typically assumed to be non-normative. We demonstrate, however, that a variety of cases of belief polarization are consistent with a Bayesian approach to belief revision. Simulation results indicate that belief polarization is not only possible but relatively common within the class of Bayesian models that we consider. Papers published at the Neural Information Processing Systems Conference.


Probabilistic Belief Revision with Structural Constraints

Neural Information Processing Systems

Experts (human or computer) are often required to assess the probability of uncertain events. When a collection of experts independently assess events that are structurally interrelated, the resulting assessment may violate fundamental laws of probability. Such an assessment is termed incoherent. In this work we investigate how the problem of incoherence may be affected by allowing experts to specify likelihood models and then update their assessments based on the realization of a globally-observable random sequence. Papers published at the Neural Information Processing Systems Conference.


Uniqueness of Belief Propagation on Signed Graphs

Neural Information Processing Systems

While loopy Belief Propagation (LBP) has been utilized in a wide variety of applications with empirical success, it comes with few theoretical guarantees. Especially, if the interactions of random variables in a graphical model are strong, the behaviors of the algorithm can be difficult to analyze due to underlying phase transitions. In this paper, we develop a novel approach to the uniqueness problem of the LBP fixed point; our new "necessary and sufficient" condition is stated in terms of graphs and signs, where the sign denotes the types (attractive/repulsive) of the interaction (i.e., compatibility function) on the edge. In all previous works, uniqueness is guaranteed only in the situations where the strength of the interactions are "sufficiently" small in certain senses. In contrast, our condition covers arbitrary strong interactions on the specified class of signed graphs.