Discourse & Dialogue
Supervised Topic Models
Mcauliffe, Jon D., Blei, David M.
We introduce supervised latent Dirichlet allocation (sLDA), a statistical model of labelled documents. The model accommodates a variety of response types. We derive a maximum-likelihood procedure for parameter estimation, which relies on variational approximations to handle intractable posterior expectations. Prediction problems motivate this research: we use the fitted model to predict response values for new documents. We test sLDA on two real-world problems: movie ratings predicted from reviews, and web page popularity predicted from text descriptions. We illustrate the benefits of sLDA versus modern regularized regression, as well as versus an unsupervised LDA analysis followed by a separate regression.
Text Modeling using Unsupervised Topic Models and Concept Hierarchies
Chemudugunta, Chaitanya, Smyth, Padhraic, Steyvers, Mark
Statistical topic models provide a general data-driven framework for automated discovery of high-level knowledge from large collections of text documents. While topic models can potentially discover a broad range of themes in a data set, the interpretability of the learned topics is not always ideal. Human-defined concepts, on the other hand, tend to be semantically richer due to careful selection of words to define concepts but they tend not to cover the themes in a data set exhaustively. In this paper, we propose a probabilistic framework to combine a hierarchy of human-defined semantic concepts with statistical topic models to seek the best of both worlds. Experimental results using two different sources of concept hierarchies and two collections of text documents indicate that this combination leads to systematic improvements in the quality of the associated language models as well as enabling new techniques for inferring and visualizing the semantics of a document.
Dialogue on Dialogues -- Multidisciplinary Evaluation of Advanced Speech-Based Interactive Systems: A Report on the Interspeech 2006 Satellite Event
Jokinen, Kristiina, McTear, Michael, Larson, James A.
The Dialogue on Dialogues workshop was organized as a satellite event at the Interspeech 2006 conference in Pittsburgh, Pennsylvania, and it was held on September 17, 2006, immediately before the main conference. It was planned and coordinated by Michael McTear (University of Ulster, UK), Kristiina Jokinen (University of Helsinki, Finland), and James A. Larson (Portland State University, USA). The one-day workshop involved more than 40 participants from Europe, the United States, Australia, and Japan.
Correlated Topic Models
Lafferty, John D., Blei, David M.
Topic models, such as latent Dirichlet allocation (LDA), can be useful tools for the statistical analysis of document collections and other discrete data. The LDA model assumes that the words of each document arise from a mixture of topics, each of which is a distribution over the vocabulary. A limitation of LDA is the inability to model topic correlation even though, for example, a document about genetics is more likely to also be about disease than x-ray astronomy. This limitation stems from the use of the Dirichlet distribution to model the variability among the topic proportions. In this paper we develop the correlated topic model (CTM), where the topic proportions exhibit correlation via the logistic normal distribution [1]. We derive a mean-field variational inference algorithm for approximate posterior inference in this model, which is complicated by the fact that the logistic normal is not conjugate to the multinomial. The CTM gives a better fit than LDA on a collection of OCRed articles from the journal Science. Furthermore, the CTM provides a natural way of visualizing and exploring this and other unstructured data sets.
Correlated Topic Models
Lafferty, John D., Blei, David M.
Topic models, such as latent Dirichlet allocation (LDA), can be useful tools for the statistical analysis of document collections and other discrete data.The LDA model assumes that the words of each document arise from a mixture of topics, each of which is a distribution over the vocabulary. Alimitation of LDA is the inability to model topic correlation even though, for example, a document about genetics is more likely to also be about disease than x-ray astronomy. This limitation stems from the use of the Dirichlet distribution to model the variability among the topic proportions. In this paper we develop the correlated topic model (CTM), where the topic proportions exhibit correlation via the logistic normal distribution [1]. We derive a mean-field variational inference algorithm forapproximate posterior inference in this model, which is complicated bythe fact that the logistic normal is not conjugate to the multinomial. The CTM gives a better fit than LDA on a collection of OCRed articles from the journal Science. Furthermore, the CTM provides a natural wayof visualizing and exploring this and other unstructured data sets.
Reports on the Twenty-First National Conference on Artificial Intelligence (AAAI-06) Workshop Program
Achtner, Wolfgang, Aimeur, Esma, Anand, Sarabjot Singh, Appelt, Doug, Ashish, Naveen, Barnes, Tiffany, Beck, Joseph E., Dias, M. Bernardine, Doshi, Prashant, Drummond, Chris, Elazmeh, William, Felner, Ariel, Freitag, Dayne, Geffner, Hector, Geib, Christopher W., Goodwin, Richard, Holte, Robert C., Hutter, Frank, Isaac, Fair, Japkowicz, Nathalie, Kaminka, Gal A., Koenig, Sven, Lagoudakis, Michail G., Leake, David B., Lewis, Lundy, Liu, Hugo, Metzler, Ted, Mihalcea, Rada, Mobasher, Bamshad, Poupart, Pascal, Pynadath, David V., Roth-Berghofer, Thomas, Ruml, Wheeler, Schulz, Stefan, Schwarz, Sven, Seneff, Stephanie, Sheth, Amit, Sun, Ron, Thielscher, Michael, Upal, Afzal, Williams, Jason, Young, Steve, Zelenko, Dmitry
The Workshop program of the Twenty-First Conference on Artificial Intelligence was held July 16-17, 2006 in Boston, Massachusetts. The program was chaired by Joyce Chai and Keith Decker. The titles of the 17 workshops were AIDriven Technologies for Service-Oriented Computing; Auction Mechanisms for Robot Coordination; Cognitive Modeling and Agent-Based Social Simulations, Cognitive Robotics; Computational Aesthetics: Artificial Intelligence Approaches to Beauty and Happiness; Educational Data Mining; Evaluation Methods for Machine Learning; Event Extraction and Synthesis; Heuristic Search, Memory- Based Heuristics, and Their Applications; Human Implications of Human-Robot Interaction; Intelligent Techniques in Web Personalization; Learning for Search; Modeling and Retrieval of Context; Modeling Others from Observations; and Statistical and Empirical Approaches for Spoken Dialogue Systems.
Learning Content Selection Rules for Generating Object Descriptions in Dialogue
A fundamental requirement of any task-oriented dialogue system is the ability to generate object descriptions that refer to objects in the task domain. The subproblem of content selection for object descriptions in task-oriented dialogue has been the focus of much previous work and a large number of models have been proposed. In this paper, we use the annotated COCONUT corpus of task-oriented design dialogues to develop feature sets based on Dale and Reiter's (1995) incremental model, Brennan and Clark's (1996) conceptual pact model, and Jordan's (2000b) intentional influences model, and use these feature sets in a machine learning experiment to automatically learn a model of content selection for object descriptions. Since Dale and Reiter's model requires a representation of discourse structure, the corpus annotations are used to derive a representation based on Grosz and Sidner's (1986) theory of the intentional structure of discourse, as well as two very simple representations of discourse structure based purely on recency. We then apply the rule-induction program RIPPER to train and test the content selection component of an object description generator on a set of 393 object descriptions from the corpus. To our knowledge, this is the first reported experiment of a trainable content selection component for object description generation in dialogue. Three separate content selection models that are based on the three theoretical models, all independently achieve accuracies significantly above the majority class baseline (17%) on unseen test data, with the intentional influences model (42.4%) performing significantly better than either the incremental model (30.4%) or the conceptual pact model (28.9%). But the best performing models combine all the feature sets, achieving accuracies near 60%. Surprisingly, a simple recency-based representation of discourse structure does as well as one based on intentional structure. To our knowledge, this is also the first empirical comparison of a representation of Grosz and Sidner's model of discourse structure with a simpler model for any generation task.
Hierarchical Topic Models and the Nested Chinese Restaurant Process
Griffiths, Thomas L., Jordan, Michael I., Tenenbaum, Joshua B., Blei, David M.
We address the problem of learning topic hierarchies from data. The model selection problem in this domain is daunting--which of the large collection of possible trees to use? We take a Bayesian approach, generating anappropriate prior via a distribution on partitions that we refer to as the nested Chinese restaurant process. This nonparametric prior allows arbitrarilylarge branching factors and readily accommodates growing data collections. We build a hierarchical topic model by combining this prior with a likelihood that is based on a hierarchical variant of latent Dirichlet allocation. We illustrate our approach on simulated data and with an application to the modeling of NIPS abstracts.
Automated Essay Evaluation: The Criterion Online Writing Service
Burstein, Jill, Chodorow, Martin, Leacock, Claudia
Critique is an application he best way to improve one's writing instructor, revise based on the feedback, that is comprised of a suite of programs and then repeat the whole process as often as that evaluate and provide feedback for errors in possible. Unfortunately, this puts an enormous grammar, usage, and mechanics, that identify load on the classroom teacher, who is faced the essay's discourse structure, and that recognize with reading and providing feedback for perhaps potentially undesirable stylistic features. The companion scoring application, e-rater version As a result, teachers are not able to give 2.0, extracts linguistically-based features writing assignments as often as they would from an essay and uses a statistical model of wish. For example, the singular indefinite determiner a is labeled with the part-of-speech symbol AT, the adjective good is tagged JJ, the singular common noun job gets the label NN. After the corpus is tagged, frequencies are collected for each tag and for each function word (determiners, prepositions, etc.), and also for each adjacent pair of tags and function words. The individual tags and words are called unigrams, and the adjacent pairs are the bigrams. To illustrate, the word sequence, "a good job" contributes to the counts of three bigrams: a-JJ, AT-JJ, JJ-NN, which represent, respectively, the fact that the function word a was followed by an adjective, an indefinite singular determiner was followed by a noun, and an adjective was followed by a noun.