Goto

Collaborating Authors

Discourse & Dialogue: Overviews


Conversational Agents: Theory and Applications

arXiv.org Artificial Intelligence

In this chapter, we provide a review of conversational agents (CAs), discussing chatbots, intended for casual conversation with a user, as well as task-oriented agents that generally engage in discussions intended to reach one or several specific goals, often (but not always) within a specific domain. We also consider the concept of embodied conversational agents, briefly reviewing aspects such as character animation and speech processing. The many different approaches for representing dialogue in CAs are discussed in some detail, along with methods for evaluating such agents, emphasizing the important topics of accountability and interpretability. A brief historical overview is given, followed by an extensive overview of various applications, especially in the fields of health and education. We end the chapter by discussing benefits and potential risks regarding the societal impact of current and future CA technology.


Semantic and sentiment analysis of selected Bhagavad Gita translations using BERT-based language framework

arXiv.org Artificial Intelligence

It is well known that translations of songs and poems not only breaks rhythm and rhyming patterns, but also results in loss of semantic information. The Bhagavad Gita is an ancient Hindu philosophical text originally written in Sanskrit that features a conversation between Lord Krishna and Arjuna prior to the Mahabharata war. The Bhagavad Gita is also one of the key sacred texts in Hinduism and known as the forefront of the Vedic corpus of Hinduism. In the last two centuries, there has been a lot of interest in Hindu philosophy by western scholars and hence the Bhagavad Gita has been translated in a number of languages. However, there is not much work that validates the quality of the English translations. Recent progress of language models powered by deep learning has enabled not only translations but better understanding of language and texts with semantic and sentiment analysis. Our work is motivated by the recent progress of language models powered by deep learning methods. In this paper, we compare selected translations (mostly from Sanskrit to English) of the Bhagavad Gita using semantic and sentiment analyses. We use hand-labelled sentiment dataset for tuning state-of-art deep learning-based language model known as \textit{bidirectional encoder representations from transformers} (BERT). We use novel sentence embedding models to provide semantic analysis for selected chapters and verses across translations. Finally, we use the aforementioned models for sentiment and semantic analyses and provide visualisation of results. Our results show that although the style and vocabulary in the respective Bhagavad Gita translations vary widely, the sentiment analysis and semantic similarity shows that the message conveyed are mostly similar across the translations.


Task-oriented Dialogue Systems: performance vs. quality-optima, a review

arXiv.org Artificial Intelligence

Task-oriented dialogue systems (TODS) are continuing to rise in popularity as various industries find ways to effectively harness their capabilities, saving both time and money. However, even state-of-the-art TODS are not yet reaching their full potential. TODS typically have a primary design focus on completing the task at hand, so the metric of task-resolution should take priority. Other conversational quality attributes that may point to the success, or otherwise, of the dialogue, may be ignored. This can cause interactions between human and dialogue system that leave the user dissatisfied or frustrated. This paper explores the literature on evaluative frameworks of dialogue systems and the role of conversational quality attributes in dialogue systems, looking at if, how, and where they are utilised, and examining their correlation with the performance of the dialogue system.


Can Machine Learning Tools Support the Identification of Sustainable Design Leads From Product Reviews? Opportunities and Challenges

arXiv.org Artificial Intelligence

The increasing number of product reviews posted online is a gold mine for designers to know better about the products they develop, by capturing the voice of customers, and to improve these products accordingly. In the meantime, product design and development have an essential role in creating a more sustainable future. With the recent advance of artificial intelligence techniques in the field of natural language processing, this research aims to develop an integrated machine learning solution to obtain sustainable design insights from online product reviews automatically. In this paper, the opportunities and challenges offered by existing frameworks - including Python libraries, packages, as well as state-of-the-art algorithms like BERT - are discussed, illustrated, and positioned along an ad hoc machine learning process. This contribution discusses the opportunities to reach and the challenges to address for building a machine learning pipeline, in order to get insights from product reviews to design more sustainable products, including the five following stages, from the identification of sustainability-related reviews to the interpretation of sustainable design leads: data collection, data formatting, model training, model evaluation, and model deployment. Examples of sustainable design insights that can be produced out of product review mining and processing are given. Finally, promising lines for future research in the field are provided, including case studies putting in parallel standard products with their sustainable alternatives, to compare the features valued by customers and to generate in fine relevant sustainable design leads.


Natural Language Processing in-and-for Design Research

arXiv.org Artificial Intelligence

We review the scholarly contributions that utilise Natural Language Processing (NLP) methods to support the design process. Using a heuristic approach, we collected 223 articles published in 32 journals and within the period 1991-present. We present state-of-the-art NLP in-and-for design research by reviewing these articles according to the type of natural language text sources: internal reports, design concepts, discourse transcripts, technical publications, consumer opinions, and others. Upon summarizing and identifying the gaps in these contributions, we utilise an existing design innovation framework to identify the applications that are currently being supported by NLP. We then propose a few methodological and theoretical directions for future NLP in-and-for design research.


Social Fraud Detection Review: Methods, Challenges and Analysis

arXiv.org Artificial Intelligence

Social reviews have dominated the web and become a plausible source of product information. People and businesses use such information for decision-making. Businesses also make use of social information to spread fake information using a single user, groups of users, or a bot trained to generate fraudulent content. Many studies proposed approaches based on user behaviors and review text to address the challenges of fraud detection. To provide an exhaustive literature review, social fraud detection is reviewed using a framework that considers three key components: the review itself, the user who carries out the review, and the item being reviewed. As features are extracted for the component representation, a feature-wise review is provided based on behavioral, text-based features and their combination. With this framework, a comprehensive overview of approaches is presented including supervised, semi-supervised, and unsupervised learning. The supervised approaches for fraud detection are introduced and categorized into two sub-categories; classical, and deep learning. The lack of labeled datasets is explained and potential solutions are suggested. To help new researchers in the area develop a better understanding, a topic analysis and an overview of future directions is provided in each step of the proposed systematic framework.


A Review of Dialogue Systems: From Trained Monkeys to Stochastic Parrots

arXiv.org Artificial Intelligence

In spoken dialogue systems, we aim to deploy artificial intelligence to build automated dialogue agents that can converse with humans. Dialogue systems are increasingly being designed to move beyond just imitating conversation and also improve from such interactions over time. In this survey, we present a broad overview of methods developed to build dialogue systems over the years. Different use cases for dialogue systems ranging from task-based systems to open domain chatbots motivate and necessitate specific systems. Starting from simple rule-based systems, research has progressed towards increasingly complex architectures trained on a massive corpus of datasets, like deep learning systems. Motivated with the intuition of resembling human dialogues, progress has been made towards incorporating emotions into the natural language generator, using reinforcement learning. While we see a trend of highly marginal improvement on some metrics, we find that limited justification exists for the metrics, and evaluation practices are not uniform. To conclude, we flag these concerns and highlight possible research directions.


Recent Advances in Natural Language Processing via Large Pre-Trained Language Models: A Survey

arXiv.org Artificial Intelligence

Large, pre-trained transformer-based language models such as BERT have drastically changed the Natural Language Processing (NLP) field. We present a survey of recent work that uses these large language models to solve NLP tasks via pre-training then fine-tuning, prompting, or text generation approaches. We also present approaches that use pre-trained language models to generate data for training augmentation or other purposes. We conclude with discussions on limitations and suggested directions for future research.


Deep Transfer Learning & Beyond: Transformer Language Models in Information Systems Research

arXiv.org Artificial Intelligence

AI is widely thought to be poised to transform business, yet current perceptions of the scope of this transformation may be myopic. Recent progress in natural language processing involving transformer language models (TLMs) offers a potential avenue for AI-driven business and societal transformation that is beyond the scope of what most currently foresee. We review this recent progress as well as recent literature utilizing text mining in top IS journals to develop an outline for how future IS research can benefit from these new techniques. Our review of existing IS literature reveals that suboptimal text mining techniques are prevalent and that the more advanced TLMs could be applied to enhance and increase IS research involving text data, and to enable new IS research topics, thus creating more value for the research community. This is possible because these techniques make it easier to develop very powerful custom systems and their performance is superior to existing methods for a wide range of tasks and applications. Further, multilingual language models make possible higher quality text analytics for research in multiple languages. We also identify new avenues for IS research, like language user interfaces, that may offer even greater potential for future IS research.