Discourse & Dialogue


Agile Testing Days USA June 21–25, 2020

#artificialintelligence

How do you test an application which constantly listens to the customers, learns their behaviour and create personalised engagements based out of learnings!! Today data plays a vital role in every decision making and hence making sense of the data to derive useful insights for our customers is a key for success. Sentiment Analysis is the process of classifying the data into positive, negative or neutral implemented using natural language processing (NLP) and Machine Learning techniques that helps in analysing the data to gauge public opinion, market research, monitor brand and product reputation, and understand customer experiences and is mostly offered as Sentiment Analysis as-a-Service . In this talk we will discuss the Challenges are around analysing, explicit and implict opinions, sarcasm, comparative opinions, Multilingual, Emojis, defination on neutral to just name a few and the strategies to test such applications with a use case on Airlines Sentiment (trained with tweets about airlines to identify between positive, neutral, and negative tweets).


Exploratory Data Analysis for Natural Language Processing: A Complete Guide to Python Tools

#artificialintelligence

Exploratory data analysis is one of the most important parts of any machine learning workflow and Natural Language Processing is no different. But which tools you should choose to explore and visualize text data efficiently? In this article, we will discuss and implement nearly all the major techniques that you can use to understand your text data and give you a complete(ish) tour into Python tools that get the job done. In this article, we will use a million news headlines dataset from Kaggle. Now, we can take a look at the data. The dataset contains only two columns, the published date, and the news heading. For simplicity, I will be exploring the first 10000 rows from this dataset.


The Game Changing Factors -- Sentiment Analysis For Cryptocurrencies

#artificialintelligence

Sentiment is a huge driving factor in the cryptocurrency market. But it is a metric which is very hard to measure. Sentiment analysis has been on the rise for the past few years. With the introduction of new packages, sentiment analysis can be done more quickly and efficiently than ever. In this post, you'll see why looking at the mood on the social media is not a great idea for sentiment analysis.


Scalable Inference for Logistic-Normal Topic Models

Neural Information Processing Systems

Logistic-normal topic models can effectively discover correlation structures among latent topics. However, their inference remains a challenge because of the non-conjugacy between the logistic-normal prior and multinomial topic mixing proportions. Existing algorithms either make restricting mean-field assumptions or are not scalable to large-scale applications. This paper presents a partially collapsed Gibbs sampling algorithm that approaches the provably correct distribution by exploring the ideas of data augmentation. To improve time efficiency, we further present a parallel implementation that can deal with large-scale applications and learn the correlation structures of thousands of topics from millions of documents.


Spatial Latent Dirichlet Allocation

Neural Information Processing Systems

In recent years, the language model Latent Dirichlet Allocation (LDA), which clusters co-occurring words into topics, has been widely appled in the computer vision field. However, many of these applications have difficulty with modeling the spatial and temporal structure among visual words, since LDA assumes that a document is a bag-of-words''. It is also critical to properly design words'' and "documents" when using a language model to solve vision problems. In this paper, we propose a topic model Spatial Latent Dirichlet Allocation (SLDA), which better encodes spatial structure among visual words that are essential for solving many vision problems. The spatial information is not encoded in the value of visual words but in the design of documents.


Supervised Topic Models

Neural Information Processing Systems

We introduce supervised latent Dirichlet allocation (sLDA), a statistical model of labelled documents. We derive a maximum-likelihood procedure for parameter estimation, which relies on variational approximations to handle intractable posterior expectations. Prediction problems motivate this research: we use the fitted model to predict response values for new documents. We test sLDA on two real-world problems: movie ratings predicted from reviews, and web page popularity predicted from text descriptions. We illustrate the benefits of sLDA versus modern regularized regression, as well as versus an unsupervised LDA analysis followed by a separate regression.


The Doubly Correlated Nonparametric Topic Model

Neural Information Processing Systems

Topic models are learned via a statistical model of variation within document collections, but designed to extract meaningful semantic structure. Desirable traits include the ability to incorporate annotations or metadata associated with documents; the discovery of correlated patterns of topic usage; and the avoidance of parametric assumptions, such as manual specification of the number of topics. We propose a doubly correlated nonparametric topic (DCNT) model, the first model to simultaneously capture all three of these properties. Papers published at the Neural Information Processing Systems Conference.


Word Features for Latent Dirichlet Allocation

Neural Information Processing Systems

We extend Latent Dirichlet Allocation (LDA) by explicitly allowing for the encoding of side information in the distribution over words. This results in a variety of new capabilities, such as improved estimates for infrequently occurring words, as well as the ability to leverage thesauri and dictionaries in order to boost topic cohesion within and across languages. We present experiments on multi-language topic synchronisation where dictionary information is used to bias corresponding words towards similar topics. Results indicate that our model substantially improves topic cohesion when compared to the standard LDA model. Papers published at the Neural Information Processing Systems Conference.


Replicated Softmax: an Undirected Topic Model

Neural Information Processing Systems

We show how to model documents as bags of words using family of two-layer, undirected graphical models. Each member of the family has the same number of binary hidden units but a different number of softmax visible units. All of the softmax units in all of the models in the family share the same weights to the binary hidden units. We describe efficient inference and learning procedures for such a family. Each member of the family models the probability distribution of documents of a specific length as a product of topic-specific distributions rather than as a mixture and this gives much better generalization than Latent Dirichlet Allocation for modeling the log probabilities of held-out documents.


Complexity of Inference in Latent Dirichlet Allocation

Neural Information Processing Systems

We consider the computational complexity of probabilistic inference in Latent Dirichlet Allocation (LDA). First, we study the problem of finding the maximum a posteriori (MAP) assignment of topics to words, where the document's topic distribution is integrated out. We show that, when the effective number of topics per document is small, exact inference takes polynomial time. In contrast, we show that, when a document has a large number of topics, finding the MAP assignment of topics to words in LDA is NP-hard. Next, we consider the problem of finding the MAP topic distribution for a document, where the topic-word assignments are integrated out.