Goto

Collaborating Authors

 Discourse & Dialogue


Supplementary Material Infer Induced Sentiment of Comment Response to Video: A New Task, Dataset and Baseline 1 Lu Liu

Neural Information Processing Systems

This section provides a comprehensive overview of the CSMV dataset. The CSMV dataset comprises micro videos and their corresponding comments, which have been updated from February 2020 to October 2022. This extensive time range allows for the inclusion of a diverse set of content, capturing the evolution of sentiments over the course of more than two years. In total, the CSMV dataset comprises 8,210 micro videos, totaling approximately 68.83 hours of video duration, along with 107,267 related comments. The CSMV dataset defines two distinct types of labels, opinion and emotion, for analyzing the sentiment expressed in the comments towards the micro videos. By leveraging the combination of video and textual content in this dataset, researchers can examine the interaction between language expressions and visual cues in sentiment analysis. To deepen our understanding of the CSMV dataset, we performed an analysis of the distribution of videos and related comments using specific hashtags. As depicted in Figure 1, this distribution exhibits a rich diversity of topics in video content. This diversity has brought rich expression of sentiment in user comments, giving the CSMV dataset an advantage in comprehending the complexity of induced sentiment. Moreover, this diversity expands the application of the dataset for multimodal sentiment analysis tasks.


Infer Induced Sentiment of Comment Response to Video: A New Task, Dataset and Baseline 1 Lu Liu

Neural Information Processing Systems

Existing video multi-modal sentiment analysis mainly focuses on the sentiment expression of people within the video, yet often neglects the induced sentiment of viewers while watching the videos. Induced sentiment of viewers is essential for inferring the public response to videos and has broad application in analyzing public societal sentiment, effectiveness of advertising and other areas. The micro videos and the related comments provide a rich application scenario for viewers' induced sentiment analysis. In light of this, we introduces a novel research task, Multimodal Sentiment Analysis for Comment Response of Video Induced(MSA-CRVI), aims to infer opinions and emotions according to comments response to micro video. Meanwhile, we manually annotate a dataset named Comment Sentiment toward to Micro Video (CSMV) to support this research. It is the largest video multi-modal sentiment dataset in terms of scale and video duration to our knowledge, containing 107, 267 comments and 8, 210 micro videos with a video duration of 68.83 hours. To infer the induced sentiment of comment should leverage the video content, we propose the Video Content-aware Comment Sentiment Analysis (VC-CSA) method as a baseline to address the challenges inherent in this new task. Extensive experiments demonstrate that our method is showing significant improvements over other established baselines.



Clarifying Misconceptions in COVID-19 Vaccine Sentiment and Stance Analysis and Their Implications for Vaccine Hesitancy Mitigation: A Systematic Review

arXiv.org Artificial Intelligence

Background Advances in machine learning (ML) models have increased the capability of researchers to detect vaccine hesitancy in social media using Natural Language Processing (NLP). A considerable volume of research has identified the persistence of COVID-19 vaccine hesitancy in discourse shared on various social media platforms. Methods Our objective in this study was to conduct a systematic review of research employing sentiment analysis or stance detection to study discourse towards COVID-19 vaccines and vaccination spread on Twitter (officially known as X since 2023). Following registration in the PROSPERO international registry of systematic reviews, we searched papers published from 1 January 2020 to 31 December 2023 that used supervised machine learning to assess COVID-19 vaccine hesitancy through stance detection or sentiment analysis on Twitter. We categorized the studies according to a taxonomy of five dimensions: tweet sample selection approach, self-reported study type, classification typology, annotation codebook definitions, and interpretation of results. We analyzed if studies using stance detection report different hesitancy trends than those using sentiment analysis by examining how COVID-19 vaccine hesitancy is measured, and whether efforts were made to avoid measurement bias. Results Our review found that measurement bias is widely prevalent in studies employing supervised machine learning to analyze sentiment and stance toward COVID-19 vaccines and vaccination. The reporting errors are sufficiently serious that they hinder the generalisability and interpretation of these studies to understanding whether individual opinions communicate reluctance to vaccinate against SARS-CoV-2. Conclusion Improving the reporting of NLP methods is crucial to addressing knowledge gaps in vaccine hesitancy discourse.


Bridging Emotions and Architecture: Sentiment Analysis in Modern Distributed Systems

arXiv.org Artificial Intelligence

Sentiment analysis is a field within NLP that has gained importance because it is applied in various areas such as; social media surveillance, customer feedback evaluation and market research. At the same time, distributed systems allow for effective processing of large amounts of data. Therefore, this paper examines how sentiment analysis converges with distributed systems by concentrating on different approaches, challenges and future investigations. Furthermore, we do an extensive experiment where we train sentiment analysis models using both single node configuration and distributed architecture to bring out the benefits and shortcomings of each method in terms of performance and accuracy.


Evaluating Negative Sampling Approaches for Neural Topic Models

arXiv.org Artificial Intelligence

Negative sampling has emerged as an effective technique that enables deep learning models to learn better representations by introducing the paradigm of learn-to-compare. The goal of this approach is to add robustness to deep learning models to learn better representation by comparing the positive samples against the negative ones. Despite its numerous demonstrations in various areas of computer vision and natural language processing, a comprehensive study of the effect of negative sampling in an unsupervised domain like topic modeling has not been well explored. In this paper, we present a comprehensive analysis of the impact of different negative sampling strategies on neural topic models. We compare the performance of several popular neural topic models by incorporating a negative sampling technique in the decoder of variational autoencoder-based neural topic models. Experiments on four publicly available datasets demonstrate that integrating negative sampling into topic models results in significant enhancements across multiple aspects, including improved topic coherence, richer topic diversity, and more accurate document classification. Manual evaluations also indicate that the inclusion of negative sampling into neural topic models enhances the quality of the generated topics. These findings highlight the potential of negative sampling as a valuable tool for advancing the effectiveness of neural topic models.


Towards Robust Multimodal Sentiment Analysis with Incomplete Data School of Data Science, The Chinese University of Hong Kong, Shenzhen

Neural Information Processing Systems

The field of Multimodal Sentiment Analysis (MSA) has recently witnessed an emerging direction seeking to tackle the issue of data incompleteness. Recognizing that the language modality typically contains dense sentiment information, we consider it as the dominant modality and present an innovative Languagedominated Noise-resistant Learning Network (LNLN) to achieve robust MSA. The proposed LNLN features a dominant modality correction (DMC) module and dominant modality based multimodal learning (DMML) module, which enhances the model's robustness across various noise scenarios by ensuring the quality of dominant modality representations. Aside from the methodical design, we perform comprehensive experiments under random data missing scenarios, utilizing diverse and meaningful settings on several popular datasets (e.g., MOSI, MOSEI, and SIMS), providing additional uniformity, transparency, and fairness compared to existing evaluations in the literature. Empirically, LNLN consistently outperforms existing baselines, demonstrating superior performance across these challenging and extensive evaluation metrics.


Toward Robust Incomplete Multimodal Sentiment Analysis via Hierarchical Representation Learning 1,3

Neural Information Processing Systems

Multimodal Sentiment Analysis (MSA) is an important research area that aims to understand and recognize human sentiment through multiple modalities. The complementary information provided by multimodal fusion promotes better sentiment analysis compared to utilizing only a single modality. Nevertheless, in real-world applications, many unavoidable factors may lead to situations of uncertain modality missing, thus hindering the effectiveness of multimodal modeling and degrading the model's performance. To this end, we propose a Hierarchical Representation Learning Framework (HRLF) for the MSA task under uncertain missing modalities. Specifically, we propose a fine-grained representation factorization module that sufficiently extracts valuable sentiment information by factorizing modality into sentiment-relevant and modality-specific representations through crossmodal translation and sentiment semantic reconstruction. Moreover, a hierarchical mutual information maximization mechanism is introduced to incrementally maximize the mutual information between multi-scale representations to align and reconstruct the high-level semantics in the representations. Ultimately, we propose a hierarchical adversarial learning mechanism that further aligns and adapts the latent distribution of sentiment-relevant representations to produce robust joint multimodal representations. Comprehensive experiments on three datasets demonstrate that HRLF significantly improves MSA performance under uncertain modality missing cases.


Toward Robust Incomplete Multimodal Sentiment Analysis via Hierarchical Representation Learning

Neural Information Processing Systems

Multimodal Sentiment Analysis (MSA) is an important research area that aims to understand and recognize human sentiment through multiple modalities. The complementary information provided by multimodal fusion promotes better sentiment analysis compared to utilizing only a single modality. Nevertheless, in real-world applications, many unavoidable factors may lead to situations of uncertain modality missing, thus hindering the effectiveness of multimodal modeling and degrading the model's performance. To this end, we propose a Hierarchical Representation Learning Framework (HRLF) for the MSA task under uncertain missing modalities. Specifically, we propose a fine-grained representation factorization module that sufficiently extracts valuable sentiment information by factorizing modality into sentiment-relevant and modality-specific representations through crossmodal translation and sentiment semantic reconstruction.


Task-Informed Anti-Curriculum by Masking Improves Downstream Performance on Text

arXiv.org Artificial Intelligence

Masked language modeling has become a widely adopted unsupervised technique to pre-train language models. However, the process of selecting tokens for masking is random, and the percentage of masked tokens is typically fixed for the entire training process. In this paper, we propose to adjust the masking ratio and to decide which tokens to mask based on a novel task-informed anti-curriculum learning scheme. First, we harness task-specific knowledge about useful and harmful tokens in order to determine which tokens to mask. Second, we propose a cyclic decaying masking ratio, which corresponds to an anti-curriculum schedule (from hard to easy). We exemplify our novel task-informed anti-curriculum by masking (TIACBM) approach across three diverse downstream tasks: sentiment analysis, text classification by topic, and authorship attribution. Our findings suggest that TIACBM enhances the ability of the model to focus on key task-relevant features, contributing to statistically significant performance gains across tasks. We release our code at https://github.com/JarcaAndrei/TIACBM.