Discourse & Dialogue
Everything You Can Try if You Can't Hear Dialog in Movies and Shows
If you struggle to hear what's being said in the movies and shows you're watching, just know you're not alone. Whether your hearing is less than ideal, or the sound mixing could be better, or you're trying to watch and listen to something without disturbing the rest of the household, there are a lot of reasons why dialog might be hard to pick out. The good news is that there are quite a few ways to fix the problem so you don't have to put up with missing out on dialog, which is a crucial part of understanding and enjoying what's onscreen. These are the options you can try, depending on the devices and apps you're using for streaming. Your first port of call should be the apps you're using to watch whatever it is you're watching.
OTLDA: A Geometry-aware Optimal Transport Approach for Topic Modeling
We present an optimal transport framework for learning topics from textual data. While the celebrated Latent Dirichlet allocation (LDA) topic model and its variants have been applied to many disciplines, they mainly focus on word-occurrences and neglect to incorporate semantic regularities in language. Even though recent works have tried to exploit the semantic relationship between words to bridge this gap, however, these models which are usually extensions of LDA or Dirichlet Multinomial mixture (DMM) are tailored to deal effectively with either regular or short documents. The optimal transport distance provides an appealing tool to incorporate the geometry of word semantics into it. Moreover, recent developments on efficient computation of optimal transport distance also promote its application in topic modeling.
Topic Modeling Revisited: A Document Graph-based Neural Network Perspective
Most topic modeling approaches are based on the bag-of-words assumption, where each word is required to be conditionally independent in the same document. As a result, both of the generative story and the topic formulation have totally ignored the semantic dependency among words, which is important for improving the semantic comprehension and model interpretability. To this end, in this paper, we revisit the task of topic modeling by transforming each document into a directed graph with word dependency as edges between word nodes, and develop a novel approach, namely Graph Neural Topic Model (GNTM). Specifically, in GNTM, a well-defined probabilistic generative story is designed to model both the graph structure and word sets with multinomial distributions on the vocabulary and word dependency edge set as the topics. Meanwhile, a Neural Variational Inference (NVI) approach is proposed to learn our model with graph neural networks to encode the document graphs.
Discriminative Topic Modeling with Logistic LDA
Despite many years of research into latent Dirichlet allocation (LDA), applying LDA to collections of non-categorical items is still challenging for practitioners. Yet many problems with much richer data share a similar structure and could benefit from the vast literature on LDA. We propose logistic LDA, a novel discriminative variant of latent Dirichlet allocation which is easy to apply to arbitrary inputs. In particular, our model can easily be applied to groups of images, arbitrary text embeddings, or integrate deep neural networks. Although it is a discriminative model, we show that logistic LDA can learn from unlabeled data in an unsupervised manner by exploiting the group structure present in the data. In contrast to other recent topic models designed to handle arbitrary inputs, our model does not sacrifice the interpretability and principled motivation of LDA.
How Should Pre-Trained Language Models Be Fine-Tuned Towards Adversarial Robustness?
The fine-tuning of pre-trained language models has a great success in many NLP fields. Yet, it is strikingly vulnerable to adversarial examples, e.g., word substitution attacks using only synonyms can easily fool a BERT-based sentiment analysis model. In this paper, we demonstrate that adversarial training, the prevalent defense technique, does not directly fit a conventional fine-tuning scenario, because it suffers severely from catastrophic forgetting: failing to retain the generic and robust linguistic features that have already been captured by the pre-trained model. In this light, we propose Robust Informative Fine-Tuning (RIFT), a novel adversarial fine-tuning method from an information-theoretical perspective. In particular, RIFT encourages an objective model to retain the features learned from the pre-trained model throughout the entire fine-tuning process, whereas a conventional one only uses the pre-trained weights for initialization. Experimental results show that RIFT consistently outperforms the state-of-the-arts on two popular NLP tasks: sentiment analysis and natural language inference, under different attacks across various pre-trained language models.
Compositional De-Attention Networks
Attentional models are distinctly characterized by their ability to learn relative importance, i.e., assigning a different weight to input values. This paper proposes a new quasi-attention that is compositional in nature, i.e., learning whether to \textit{add}, \textit{subtract} or \textit{nullify} a certain vector when learning representations. This is strongly contrasted with vanilla attention, which simply re-weights input tokens. Our proposed \textit{Compositional De-Attention} (CoDA) is fundamentally built upon the intuition of both similarity and dissimilarity (negative affinity) when computing affinity scores, benefiting from a greater extent of expressiveness. We evaluate CoDA on six NLP tasks, i.e. open domain question answering, retrieval/ranking, natural language inference, machine translation, sentiment analysis and text2code generation.
Adversarial Multiple Source Domain Adaptation
While domain adaptation has been actively researched, most algorithms focus on the single-source-single-target adaptation setting. In this paper we propose new generalization bounds and algorithms under both classification and regression settings for unsupervised multiple source domain adaptation. Our theoretical analysis naturally leads to an efficient learning strategy using adversarial neural networks: we show how to interpret it as learning feature representations that are invariant to the multiple domain shifts while still being discriminative for the learning task. To this end, we propose multisource domain adversarial networks (MDAN) that approach domain adaptation by optimizing task-adaptive generalization bounds. To demonstrate the effectiveness of MDAN, we conduct extensive experiments showing superior adaptation performance on both classification and regression problems: sentiment analysis, digit classification, and vehicle counting.
A Reduction for Efficient LDA Topic Reconstruction
Matteo Almanza, Flavio Chierichetti, Alessandro Panconesi, Andrea Vattani
We present a novel approach for LDA (Latent Dirichlet Allocation) topic reconstruction. The main technical idea is to show that the distribution over the documents generated by LDA can be transformed into a distribution for a much simpler generative model in which documents are generated from the same set of topics but have a much simpler structure: documents are single topic and topics are chosen uniformly at random. Furthermore, this reduction is approximation preserving, in the sense that approximate distributions -- the only ones we can hope to compute in practice -- are mapped into approximate distribution in the simplified world. This opens up the possibility of efficiently reconstructing LDA topics in a roundabout way. Compute an approximate document distribution from the given corpus, transform it into an approximate distribution for the single-topic world, and run a reconstruction algorithm in the uniform, single-topic world -- a much simpler task than direct LDA reconstruction. We show the viability of the approach by giving very simple algorithms for a generalization of two notable cases that have been studied in the literature, p-separability and matrix-like topics.
Dialog-based Interactive Image Retrieval
Xiaoxiao Guo, Hui Wu, Yu Cheng, Steven Rennie, Gerald Tesauro, Rogerio Feris
Existing methods for interactive image retrieval have demonstrated the merit of integrating user feedback, improving retrieval results. However, most current systems rely on restricted forms of user feedback, such as binary relevance responses, or feedback based on a fixed set of relative attributes, which limits their impact. In this paper, we introduce a new approach to interactive image search that enables users to provide feedback via natural language, allowing for more natural and effective interaction. We formulate the task of dialog-based interactive image retrieval as a reinforcement learning problem, and reward the dialog system for improving the rank of the target image during each dialog turn. To mitigate the cumbersome and costly process of collecting human-machine conversations as the dialog system learns, we train our system with a user simulator, which is itself trained to describe the differences between target and candidate images. The efficacy of our approach is demonstrated in a footwear retrieval application. Experiments on both simulated and real-world data show that 1) our proposed learning framework achieves better accuracy than other supervised and reinforcement learning baselines and 2) user feedback based on natural language rather than pre-specified attributes leads to more effective retrieval results, and a more natural and expressive communication interface.
Multilingual Anchoring: Interactive Topic Modeling and Alignment Across Languages
Michelle Yuan, Benjamin Van Durme, Jordan L. Ying
Multilingual topic models can reveal patterns in cross-lingual document collections. However, existing models lack speed and interactivity, which prevents adoption in everyday corpora exploration or quick moving situations (e.g., natural disasters, political instability). First, we propose a multilingual anchoring algorithm that builds an anchor-based topic model for documents in different languages. Then, we incorporate interactivity to develop MTAnchor (Multilingual Topic Anchors), a system that allows users to refine the topic model. We test our algorithms on labeled English, Chinese, and Sinhalese documents. Within minutes, our methods can produce interpretable topics that are useful for specific classification tasks.