Unsupervised or Indirectly Supervised Learning
Generative Adversarial Active Learning
We propose a new active learning by query synthesis approach using Generative Adversarial Networks (GAN). Different from regular active learning, the resulting algorithm adaptively synthesizes training instances for querying to increase learning speed. We generate queries according to the uncertainty principle, but our idea can work with other active learning principles. We report results from various numerical experiments to demonstrate the effectiveness the proposed approach. In some settings, the proposed algorithm outperforms traditional pool-based approaches. To the best our knowledge, this is the first active learning work using GAN.
Semi-Supervised Learning via New Deep Network Inversion
Balestriero, Randall, Roger, Vincent, Glotin, Herve G., Baraniuk, Richard G.
We exploit a recently derived inversion scheme for arbitrary deep neural networks to develop a new semi-supervised learning framework that applies to a wide range of systems and problems. The approach outperforms current state-of-the-art methods on MNIST reaching $99.14\%$ of test set accuracy while using $5$ labeled examples per class. Experiments with one-dimensional signals highlight the generality of the method. Importantly, our approach is simple, efficient, and requires no change in the deep network architecture.
A random matrix analysis and improvement of semi-supervised learning for large dimensional data
This article provides an original understanding of the behavior of a class of graph-oriented semi-supervised learning algorithms in the limit of large and numerous data. It is demonstrated that the intuition at the root of these methods collapses in this limit and that, as a result, most of them become inconsistent. Corrective measures and a new data-driven parametrization scheme are proposed along with a theoretical analysis of the asymptotic performances of the resulting approach. A surprisingly close behavior between theoretical performances on Gaussian mixture models and on real datasets is also illustrated throughout the article, thereby suggesting the importance of the proposed analysis for dealing with practical data. As a result, significant performance gains are observed on practical data classification using the proposed parametrization.
Bayesian GAN
Saatchi, Yunus, Wilson, Andrew Gordon
Generative adversarial networks (GANs) can implicitly learn rich distributions over images, audio, and data which are hard to model with an explicit likelihood. We present a practical Bayesian formulation for unsupervised and semi-supervised learning with GANs. Within this framework, we use stochastic gradient Hamiltonian Monte Carlo to marginalize the weights of the generator and discriminator networks. The resulting approach is straightforward and obtains good performance without any standard interventions such as feature matching, or mini-batch discrimination. By exploring an expressive posterior over the parameters of the generator, the Bayesian GAN avoids mode-collapse, produces interpretable and diverse candidate samples, and provides state-of-the-art quantitative results for semi-supervised learning on benchmarks including SVHN, CelebA, and CIFAR-10, outperforming DCGAN, Wasserstein GANs, and DCGAN ensembles.
ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching
Li, Chunyuan, Liu, Hao, Chen, Changyou, Pu, Yunchen, Chen, Liqun, Henao, Ricardo, Carin, Lawrence
We investigate the non-identifiability issues associated with bidirectional adversarial training for joint distribution matching. Within a framework of conditional entropy, we propose both adversarial and non-adversarial approaches to learn desirable matched joint distributions for unsupervised and supervised tasks. We unify a broad family of adversarial models as joint distribution matching problems. Our approach stabilizes learning of unsupervised bidirectional adversarial learning methods. Further, we introduce an extension for semi-supervised learning tasks. Theoretical results are validated in synthetic data and real-world applications.
Fisher GAN
Generative Adversarial Networks (GANs) are powerful models for learning complex distributions. Stable training of GANs has been addressed in many recent works which explore different metrics between distributions. In this paper we introduce Fisher GAN which fits within the Integral Probability Metrics (IPM) framework for training GANs. Fisher GAN defines a critic with a data dependent constraint on its second order moments. We show in this paper that Fisher GAN allows for stable and time efficient training that does not compromise the capacity of the critic, and does not need data independent constraints such as weight clipping. We analyze our Fisher IPM theoretically and provide an algorithm based on Augmented Lagrangian for Fisher GAN. We validate our claims on both image sample generation and semi-supervised classification using Fisher GAN.
Implicit Manifold Learning on Generative Adversarial Networks
Lui, Kry Yik Chau, Cao, Yanshuai, Gazeau, Maxime, Zhang, Kelvin Shuangjian
This paper raises an implicit manifold learning perspective in Generative Adversarial Networks (GANs), by studying how the support of the learned distribution, modelled as a submanifold $\mathcal{M}_{\theta}$, perfectly match with $\mathcal{M}_{r}$, the support of the real data distribution. We show that optimizing Jensen-Shannon divergence forces $\mathcal{M}_{\theta}$ to perfectly match with $\mathcal{M}_{r}$, while optimizing Wasserstein distance does not. On the other hand, by comparing the gradients of the Jensen-Shannon divergence and the Wasserstein distances ($W_1$ and $W_2^2$) in their primal forms, we conjecture that Wasserstein $W_2^2$ may enjoy desirable properties such as reduced mode collapse. It is therefore interesting to design new distances that inherit the best from both distances.
A Self-Training Method for Semi-Supervised GANs
Do-Omri, Alan, Wu, Dalei, Liu, Xiaohua
Since the creation of Generative Adversarial Networks (GANs), much work has been done to improve their training stability, their generated image quality, their range of application but nearly none of them explored their self-training potential. Self-training has been used before the advent of deep learning in order to allow training on limited labelled training data and has shown impressive results in semi-supervised learning. In this work, we combine these two ideas and make GANs self-trainable for semi-supervised learning tasks by exploiting their infinite data generation potential. Results show that using even the simplest form of self-training yields an improvement. We also show results for a more complex self-training scheme that performs at least as well as the basic self-training scheme but with significantly less data augmentation.
Semi-Supervised Haptic Material Recognition for Robots using Generative Adversarial Networks
Erickson, Zackory, Chernova, Sonia, Kemp, Charles C.
Material recognition enables robots to incorporate knowledge of material properties into their interactions with everyday objects. For example, material recognition opens up opportunities for clearer communication with a robot, such as "bring me the metal coffee mug", and recognizing plastic versus metal is crucial when using a microwave or oven. However, collecting labeled training data with a robot is often more difficult than unlabeled data. We present a semi-supervised learning approach for material recognition that uses generative adversarial networks (GANs) with haptic features such as force, temperature, and vibration. Our approach achieves state-of-the-art results and enables a robot to estimate the material class of household objects with ~90% accuracy when 92% of the training data are unlabeled. We explore how well this approach can recognize the material of new objects and we discuss challenges facing generalization. To motivate learning from unlabeled training data, we also compare results against several common supervised learning classifiers. In addition, we have released the dataset used for this work which consists of time-series haptic measurements from a robot that conducted thousands of interactions with 72 household objects.