Goto

Collaborating Authors

 Unsupervised or Indirectly Supervised Learning


N-GCN: Multi-scale Graph Convolution for Semi-supervised Node Classification

arXiv.org Machine Learning

Graph Convolutional Networks (GCNs) have shown significant improvements in semi-supervised learning on graph-structured data. Concurrently, unsupervised learning of graph embeddings has benefited from the information contained in random walks. In this paper, we propose a model: Network of GCNs (N-GCN), which marries these two lines of work. At its core, N-GCN trains multiple instances of GCNs over node pairs discovered at different distances in random walks, and learns a combination of the instance outputs which optimizes the classification objective. Our experiments show that our proposed N-GCN model improves state-of-the-art baselines on all of the challenging node classification tasks we consider: Cora, Citeseer, Pubmed, and PPI. In addition, our proposed method has other desirable properties, including generalization to recently proposed semi-supervised learning methods such as GraphSAGE, allowing us to propose N-SAGE, and resilience to adversarial input perturbations.


The State of Fakery

Communications of the ACM

An image of a dog created by a deep convolutional generative adversarial network (GAN) algorithm.


[R] WaveGAN: Synthesizing Audio with Generative Adversarial Networks โ€ข r/MachineLearning

@machinelearnbot

I don't see why you're so eager to bash this that hard. Most GAN papers work on images 128x128 which is about the sample size in 1s audio, and even with the most clever tricks so far like LAPGAN or PGGAN the best is about 1024x1024 images.


Automatic feature engineering using Generative Adversarial Networks

#artificialintelligence

The purpose of deep learning is to learn a representation of high dimensional and noisy data using a sequence of differentiable functions, i.e., geometric transformations, that can perhaps be used for supervised learning tasks among other tasks. It has had great success in discriminative models while generative models have not fared perhaps quite as well due to the limitations of explicit maximum likelihood estimation (MLE). Adversarial learning as presented in the Generative Adversarial Network (GAN) aims to overcome these problems by using implicit MLE.


Interaction Matters: A Note on Non-asymptotic Local Convergence of Generative Adversarial Networks

arXiv.org Machine Learning

Motivated by the pursuit of a systematic computational and algorithmic understanding of Generative Adversarial Networks (GANs), we present a simple yet unified non-asymptotic local convergence theory for smooth two-player games, which subsumes several discrete-time gradient-based saddle point dynamics. The analysis reveals the surprising nature of the off-diagonal interaction term as both a blessing and a curse. On the one hand, this interaction term explains the origin of the slow-down effect in the convergence of Simultaneous Gradient Ascent (SGA) to stable Nash equilibria. On the other hand, for the unstable equilibria, exponential convergence can be proved thanks to the interaction term, for three modified dynamics which have been proposed to stabilize GAN training: Optimistic Mirror Descent (OMD), Consensus Optimization (CO) and Predictive Method (PM). The analysis uncovers the intimate connections among these stabilizing techniques, and provides detailed characterization on the choice of learning rate.


Machine Learning in a Box (week 3) : Algorithms Learning Styles

#artificialintelligence

In case you are catching the train running, here is the link to the introduction blog of the Machine Learning in a Box series which allow you to get the series from the start. At the end of this introduction blog you will find the links for each elements of the series.


Fast Interactive Image Retrieval using large-scale unlabeled data

arXiv.org Machine Learning

An interactive image retrieval system learns which images in the database belong to a user's query concept, by analyzing the example images and feedback provided by the user. The challenge is to retrieve the relevant images with minimal user interaction. In this work, we propose to solve this problem by posing it as a binary classification task of classifying all images in the database as being relevant or irrelevant to the user's query concept. Our method combines active learning with graph-based semi-supervised learning (GSSL) to tackle this problem. Active learning reduces the number of user interactions by querying the labels of the most informative points and GSSL allows to use abundant unlabeled data along with the limited labeled data provided by the user. To efficiently find the most informative point, we use an uncertainty sampling based method that queries the label of the point nearest to the decision boundary of the classifier. We estimate this decision boundary using our heuristic of adaptive threshold. To utilize huge volumes of unlabeled data we use an efficient approximation based method that reduces the complexity of GSSL from $O(n^3)$ to $O(n)$, making GSSL scalable. We make the classifier robust to the diversity and noisy labels associated with images in large databases by incorporating information from multiple modalities such as visual information extracted from deep learning based models and semantic information extracted from the WordNet. High F1 scores within few relevance feedback rounds in our experiments with concepts defined on AnimalWithAttributes and Imagenet (1.2 million images) datasets indicate the effectiveness and scalability of our approach.


Eye In-painting with Exemplar Generative Adversarial Networks (ExGANs)

@machinelearnbot

We introduce a novel approach to in-painting where the identity of the object to remove or change is preserved and accounted for at inference time: Exemplar GANs (ExGANs). ExGANs are a type of conditional GAN that utilize exemplar information to produce high-quality, personalized in-painting results.


Interpretable Graph-Based Semi-Supervised Learning via Flows

AAAI Conferences

In this paper, we consider the interpretability of the foundational Laplacian-based semi-supervised learning approaches on graphs. We introduce a novel flow-based learning framework that subsumes the foundational approaches and additionally provides a detailed, transparent, and easily understood expression of the learning process in terms of graph flows. As a result, one can visualize and interactively explore the precise subgraph along which the information from labeled nodes flows to an unlabeled node of interest. Surprisingly, the proposed framework avoids trading accuracy for interpretability, but in fact leads to improved prediction accuracy, which is supported both by theoretical considerations and empirical results. The flow-based framework guarantees the maximum principle by construction and can handle directed graphs in an out-of-the-box manner.


Semi-Supervised AUC Optimization Without Guessing Labels of Unlabeled Data

AAAI Conferences

Semi-supervised learning, which aims to construct learners that automatically exploit the large amount of unlabeled data in addition to the limited labeled data, has been widely applied in many real-world applications. AUC is a well-known performance measure for a learner, and directly optimizing AUC may result in a better prediction performance. Thus, semi-supervised AUC optimization has drawn much attention. Existing semi-supervised AUC optimization methods exploit unlabeled data by explicitly or implicitly estimating the possible labels of the unlabeled data based on various distributional assumptions. However, these assumptions may be violated in many real-world applications, and estimating labels based on the violated assumption may lead to poor performance. In this paper, we argue that, in semi-supervised AUC optimization, it is unnecessary to guess the possible labels of the unlabeled data or prior probability based on any distributional assumptions. We analytically show that the AUC risk can be estimated unbiasedly by simply treating the unlabeled data as both positive and negative. Based on this finding, two semi-supervised AUC optimization methods named Samult and Sampura are proposed. Experimental results indicate that the proposed methods outperform the existing methods.