Transfer Learning
Hypothesis Transfer Learning via Transformation Functions
Simon S. Du, Jayanth Koushik, Aarti Singh, Barnabas Poczos
We consider the Hypothesis Transfer Learning (HTL) problem where one incorporates a hypothesis trained on the source domain into the learning procedure of the target domain. Existing theoretical analysis either only studies specific algorithms or only presents upper bounds on the generalization error but not on the excess risk. In this paper, we propose a unified algorithm-dependent framework for HTL through a novel notion of transformation function, which characterizes the relation between the source and the target domains. We conduct a general risk analysis of this framework and in particular, we show for the first time, if two domains are related, HTL enjoys faster convergence rates of excess risks for Kernel Smoothing and Kernel Ridge Regression than those of the classical non-transfer learning settings. Experiments on real world data demonstrate the effectiveness of our framework.
Learning to Model the Tail
We describe an approach to learning from long-tailed, imbalanced datasets that are prevalent in real-world settings. Here, the challenge is to learn accurate "few-shot'' models for classes in the tail of the class distribution, for which little data is available. We cast this problem as transfer learning, where knowledge from the data-rich classes in the head of the distribution is transferred to the data-poor classes in the tail. Our key insights are as follows. First, we propose to transfer meta-knowledge about learning-to-learn from the head classes.
Adaptive Smoothed Online Multi-Task Learning
Keerthiram Murugesan, Hanxiao Liu, Jaime Carbonell, Yiming Yang
This paper addresses the challenge of jointly learning both the per-task model parameters and the inter-task relationships in a multi-task online learning setting. The proposed algorithm features probabilistic interpretation, efficient updating rules and flexible modulation on whether learners focus on their specific task or on jointly address all tasks. The paper also proves a sub-linear regret bound as compared to the best linear predictor in hindsight. Experiments over three multitask learning benchmark datasets show advantageous performance of the proposed approach over several state-of-the-art online multi-task learning baselines.
Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative Priors
Deep learning is increasingly moving towards a transfer learning paradigm whereby large foundation models are fine-tuned on downstream tasks, starting from an initialization learned on the source task. But an initialization contains relatively little information about the source task, and does not reflect the belief that our knowledge of the source task should affect the locations and shape of optima on the downstream task. Instead, we show that we can learn highly informative posteriors from the source task, through supervised or self-supervised approaches, which then serve as the basis for priors that modify the whole loss surface on the downstream task. This simple modular approach enables significant performance gains and more data-efficient learning on a variety of downstream classification and segmentation tasks, serving as a drop-in replacement for standard pre-training strategies. These highly informative priors also can be saved for future use, similar to pre-trained weights, and stand in contrast to the zero-mean isotropic uninformative priors that are typically used in Bayesian deep learning.
Catastrophic Forgetting Meets Negative Transfer: Batch Spectral Shrinkage for Safe Transfer Learning
Xinyang Chen, Sinan Wang, Bo Fu, Mingsheng Long, Jianmin Wang
Before sufficient training data is available, fine-tuning neural networks pre-trained on large-scale datasets substantially outperforms training from random initialization. However, fine-tuning methods suffer from a dilemma across catastrophic forgetting and negative transfer. While several methods with explicit attempts to overcome catastrophic forgetting have been proposed, negative transfer is rarely delved into. In this paper, we launch an in-depth empirical investigation into negative transfer in fine-tuning and find that, for the weight parameters and feature representations, transferability of their spectral components is diverse. For safe transfer learning, we present Batch Spectral Shrinkage (BSS), a novel regularization approach to penalizing smaller singular values so that untransferable spectral components are suppressed. BSS is orthogonal to existing fine-tuning methods and is readily pluggable into them. Experimental results show that BSS can significantly enhance the performance of state-of-the-art methods, especially in few training data regime.
c6bff625bdb0393992c9d4db0c6bbe45-AuthorFeedback.pdf
We thank the reviewers for insightful comments. We have provided code in the supplemental for full reproducibility. Common Question: The method is for negative transfer rather than catastrophic forgetting. In transfer learning [23], "transfer" is the ability to apply knowledge learned in previous tasks to new tasks. This is emphasized by the current Title and Introduction.
Transfer Learning via Minimizing the Performance Gap Between Domains
Boyu Wang, Jorge Mendez, Mingbo Cai, Eric Eaton
We propose a new principle for transfer learning, based on a straightforward intuition: if two domains are similar to each other, the model trained on one domain should also perform well on the other domain, and vice versa. To formalize this intuition, we define the performance gap as a measure of the discrepancy between the source and target domains. We derive generalization bounds for the instance weighting approach to transfer learning, showing that the performance gap can be viewed as an algorithm-dependent regularizer, which controls the model complexity. Our theoretical analysis provides new insight into transfer learning and motivates a set of general, principled rules for designing new instance weighting schemes for transfer learning. These rules lead to gapBoost, a novel and principled boosting approach for transfer learning. Our experimental evaluation on benchmark data sets shows that gapBoost significantly outperforms previous boosting-based transfer learning algorithms.
On the Value of Target Data in Transfer Learning
We aim to understand the value of additional labeled or unlabeled target data in transfer learning, for any given amount of source data; this is motivated by practical questions around minimizing sampling costs, whereby, target data is usually harder or costlier to acquire than source data, but can yield better accuracy. To this aim, we establish the first minimax-rates in terms of both source and target sample sizes, and show that performance limits are captured by new notions of discrepancy between source and target, which we refer to as transfer exponents. Interestingly, we find that attaining minimax performance is akin to ignoring one of the source or target samples, provided distributional parameters were known a priori. Moreover, we show that practical decisions - w.r.t.