Goto

Collaborating Authors

 Statistical Learning


A Comparison between Neural Networks and other Statistical Techniques for Modeling the Relationship between Tobacco and Alcohol and Cancer

Neural Information Processing Systems

Epidemiological data is traditionally analyzed with very simple techniques. Flexible models, such as neural networks, have the potential to discover unanticipated features in the data. However, to be useful, flexible models must have effective control on overfitting. This paper reports on a comparative study of the predictive quality of neural networks and other flexible models applied to real and artificial epidemiological data. The results suggest that there are no major unanticipated complex features in the real data, and also demonstrate that MacKay's [1995] Bayesian neural network methodology provides effective control on overfitting while retaining the ability to discover complex features in the artificial data. 1 Introduction Traditionally, very simple statistical techniques are used in the analysis of epidemiological studies.


On a Modification to the Mean Field EM Algorithm in Factorial Learning

Neural Information Processing Systems

A modification is described to the use of mean field approximations in the E step of EM algorithms for analysing data from latent structure models, as described by Ghahramani (1995), among others. The modification involves second-order Taylor approximations to expectations computed in the E step. The potential benefits of the method are illustrated using very simple latent profile models.


Unsupervised Learning by Convex and Conic Coding

Neural Information Processing Systems

Unsupervised learning algorithms based on convex and conic encoders are proposed. The encoders find the closest convex or conic combination of basis vectors to the input. The learning algorithms produce basis vectors that minimize the reconstruction error of the encoders. The convex algorithm develops locally linear models of the input, while the conic algorithm discovers features. Both algorithms are used to model handwritten digits and compared with vector quantization and principal component analysis.


Support Vector Regression Machines

Neural Information Processing Systems

A new regression technique based on Vapnik's concept of support vectors is introduced. We compare support vector regression (SVR) with a committee regression technique (bagging) based on regression trees and ridge regression done in feature space. On the basis of these experiments, it is expected that SVR will have advantages in high dimensionality space because SVR optimization does not depend on the dimensionality of the input space.


Contour Organisation with the EM Algorithm

Neural Information Processing Systems

This paper describes how the early visual process of contour organisation can be realised using the EM algorithm. The underlying computational representation is based on fine spline coverings. According to our EM approach the adjustment of spline parameters draws on an iterative weighted least-squares fitting process. The expectation step of our EM procedure computes the likelihood of the data using a mixture model defined over the set of spline coverings. These splines are limited in their spatial extent using Gaussian windowing functions.


Combining Neural Network Regression Estimates with Regularized Linear Weights

Neural Information Processing Systems

When combining a set of learned models to form an improved estimator, the issue of redundancy or multicollinearity in the set of models must be addressed. A progression of existing approaches and their limitations with respect to the redundancy is discussed. A new approach, PCR *, based on principal components regression is proposed to address these limitations. An evaluation of the new approach on a collection of domains reveals that: 1) PCR* was the most robust combination method as the redundancy of the learned models increased, 2) redundancy could be handled without eliminating any of the learned models, and 3) the principal components of the learned models provided a continuum of "regularized" weights from which PCR * could choose.


Radial Basis Function Networks and Complexity Regularization in Function Learning

Neural Information Processing Systems

In this paper we apply the method of complexity regularization to derive estimation bounds for nonlinear function estimation using a single hidden layer radial basis function network.


For Valid Generalization the Size of the Weights is More Important than the Size of the Network

Neural Information Processing Systems

Baum and Haussler [4] used these results to give sample size bounds for multi-layer threshold networks Generalization and the Size of the Weights in Neural Networks 135 that grow at least as quickly as the number of weights (see also [7]). However, for pattern classification applications the VC-bounds seem loose; neural networks often perform successfully with training sets that are considerably smaller than the number of weights. This paper shows that for classification problems on which neural networks perform well, if the weights are not too big, the size of the weights determines the generalization performance. In contrast with the function classes and algorithms considered in the VC-theory, neural networks used for binary classification problems have real-valued outputs, and learning algorithms typically attempt to minimize the squared error of the network output over a training set. As well as encouraging the correct classification, this tends to push the output away from zero and towards the target values of { -1, I}.


Time Series Prediction using Mixtures of Experts

Neural Information Processing Systems

We consider the problem of prediction of stationary time series, using the architecture known as mixtures of experts (MEM). Here we suggest a mixture which blends several autoregressive models. This study focuses on some theoretical foundations of the prediction problem in this context. More precisely, it is demonstrated that this model is a universal approximator, with respect to learning the unknown prediction function. This statement is strengthened as upper bounds on the mean squared error are established. Based on these results it is possible to compare the MEM to other families of models (e.g., neural networks and state dependent models). It is shown that a degenerate version of the MEM is in fact equivalent to a neural network, and the number of experts in the architecture plays a similar role to the number of hidden units in the latter model.


Extraction of Temporal Features in the Electrosensory System of Weakly Electric Fish

Neural Information Processing Systems

The weakly electric fish, Eigenmannia, generates a quasi sinusoidal, dipole-like electric field at individually fixed frequencies (250 - 600 Hz) by discharging an electric organ located in its tail (see Bullock and Heilgenberg, 1986 for reviews). The fish sense local changes in the electric field by means of two types of tuberous electroreceptors located on the body surface.