The journey of AI started in the 1950s with the pioneering work of Alan Turing, who proposed the Turing Test to determine if a machine could mimic human intelligence. In the 1960s, AI research gained momentum with the development of the first AI programming language, LISP, by John McCarthy. Early AI systems focused on symbolic reasoning and rule-based systems, which led to the development of expert systems in the 1970s and 1980s. The 1990s witnessed a shift in focus towards machine learning and data-driven approaches, driven by the increased availability of digital data and advancements in computing power. This period saw the rise of neural networks and the development of support vector machines, which allowed AI systems to learn from data, leading to better performance and adaptability.
In past few years, several techniques have been proposed for training of linear Support Vector Machine (SVM) in limited-memory setting, where a dual blockcoordinate descent (dual-BCD) method was used to balance cost spent on I/O and computation. In this paper, we consider the more general setting of regularized Empirical Risk Minimization (ERM) when data cannot fit into memory. In particular, we generalize the existing block minimization framework based on strong duality and Augmented Lagrangian technique to achieve global convergence for general convex ERM. The block minimization framework is flexible in the sense that, given a solver working under sufficient memory, one can integrate it with the framework to obtain a solver globally convergent under limited-memory condition. We conduct experiments on L1-regularized classification and regression problems to corroborate our convergence theory and compare the proposed framework to algorithms adopted from online and distributed settings, which shows superiority of the proposed approach on data of size ten times larger than the memory capacity.
We consider the problem of statistical computations with persistence diagrams, a summary representation of topological features in data. These diagrams encode persistent homology, a widely used invariant in topological data analysis. While several avenues towards a statistical treatment of the diagrams have been explored recently, we follow an alternative route that is motivated by the success of methods based on the embedding of probability measures into reproducing kernel Hilbert spaces. In fact, a positive definite kernel on persistence diagrams has recently been proposed, connecting persistent homology to popular kernel-based learning techniques such as support vector machines. However, important properties of that kernel enabling a principled use in the context of probability measure embeddings remain to be explored. Our contribution is to close this gap by proving universality of a variant of the original kernel, and to demonstrate its e ffective use in two-sample hypothesis testing on synthetic as well as real-world data.
In user-facing applications, displaying calibrated confidence measures-- probabilities that correspond to true frequency--can be as important as obtaining high accuracy. We are interested in calibration for structured prediction problems such as speech recognition, optical character recognition, and medical diagnosis. Structured prediction presents new challenges for calibration: the output space is large, and users may issue many types of probability queries (e.g., marginals) on the structured output. We extend the notion of calibration so as to handle various subtleties pertaining to the structured setting, and then provide a simple recalibration method that trains a binary classifier to predict probabilities of interest. We explore a range of features appropriate for structured recalibration, and demonstrate their efficacy on three real-world datasets.
Recently proposed adversarial classification methods have shown promising results for cost sensitive and multivariate losses. In contrast with empirical risk minimization (ERM) methods, which use convex surrogate losses to approximate the desired non-convex target loss function, adversarial methods minimize non-convex losses by treating the properties of the training data as being uncertain and worst case within a minimax game. Despite this difference in formulation, we recast adversarial classification under zero-one loss as an ERM method with a novel prescribed loss function. We demonstrate a number of theoretical and practical advantages over the very closely related hinge loss ERM methods. This establishes adversarial classification under the zero-one loss as a method that fills the long standing gap in multiclass hinge loss classification, simultaneously guaranteeing Fisher consistency and universal consistency, while also providing dual parameter sparsity and high accuracy predictions in practice.
Many applications of machine learning involve structured outputs with large domains, where learning of a structured predictor is prohibitive due to repetitive calls to an expensive inference oracle. In this work, we show that by decomposing training of a Structural Support Vector Machine (SVM) into a series of multiclass SVM problems connected through messages, one can replace an expensive structured oracle with Factorwise Maximization Oracles (FMOs) that allow efficient implementation of complexity sublinear to the factor domain. A Greedy Direction Method of Multiplier (GDMM) algorithm is then proposed to exploit the sparsity of messages while guarantees convergence to ɛ sub-optimality after O(log(1/ɛ)) passes of FMOs over every factor. We conduct experiments on chain-structured and fully-connected problems of large output domains, where the proposed approach is orders-of-magnitude faster than current state-of-the-art algorithms for training Structural SVMs.
Frank-Wolfe (FW) algorithms with linear convergence rates have recently achieved great efficiency in many applications. Garber and Meshi (2016) designed a new decomposition-invariant pairwise FW variant with favorable dependency on the domain geometry. Unfortunately it applies only to a restricted class of polytopes and cannot achieve theoretical and practical efficiency at the same time. In this paper, we show that by employing an away-step update, similar rates can be generalized to arbitrary polytopes with strong empirical performance. A new "condition number" of the domain is introduced which allows leveraging the sparsity of the solution. We applied the method to a reformulation of SVM, and the linear convergence rate depends, for the first time, on the number of support vectors.
The adoption of automated, data-driven decision making in an ever expanding range of applications has raised concerns about its potential unfairness towards certain social groups. In this context, a number of recent studies have focused on defining, detecting, and removing unfairness from data-driven decision systems. However, the existing notions of fairness, based on parity (equality) in treatment or outcomes for different social groups, tend to be quite stringent, limiting the overall decision making accuracy. In this paper, we draw inspiration from the fairdivision and envy-freeness literature in economics and game theory and propose preference-based notions of fairness--given the choice between various sets of decision treatments or outcomes, any group of users would collectively prefer its treatment or outcomes, regardless of the (dis)parity as compared to the other groups. Then, we introduce tractable proxies to design margin-based classifiers that satisfy these preference-based notions of fairness. Finally, we experiment with a variety of synthetic and real-world datasets and show that preference-based fairness allows for greater decision accuracy than parity-based fairness.
A family of learning algorithms generated from additive models have attracted much attention recently for their flexibility and interpretability in high dimensional data analysis. Among them, learning models with grouped variables have shown competitive performance for prediction and variable selection. However, the previous works mainly focus on the least squares regression problem, not the classification task. Thus, it is desired to design the new additive classification model with variable selection capability for many real-world applications which focus on high-dimensional data classification. To address this challenging problem, in this paper, we investigate the classification with group sparse additive models in reproducing kernel Hilbert spaces. A novel classification method, called as group sparse additive machine (GroupSAM), is proposed to explore and utilize the structure information among the input variables. Generalization error bound is derived and proved by integrating the sample error analysis with empirical covering numbers and the hypothesis error estimate with the stepping stone technique. Our new bound shows that GroupSAM can achieve a satisfactory learning rate with polynomial decay. Experimental results on synthetic data and seven benchmark datasets consistently show the effectiveness of our new approach.