Collaborating Authors

Support Vector Machines: Overviews

Towards Knowledgeable Supervised Lifelong Learning Systems

Journal of Artificial Intelligence Research

Learning a sequence of tasks is a long-standing challenge in machine learning. This setting applies to learning systems that observe examples of a range of tasks at different points in time. A learning system should become more knowledgeable as more related tasks are learned. Although the problem of learning sequentially was acknowledged for the first time decades ago, the research in this area has been rather limited. Research in transfer learning, multitask learning, metalearning and deep learning has studied some challenges of these kinds of systems. Recent research in lifelong machine learning and continual learning has revived interest in this problem. We propose Proficiente, a full framework for long-term learning systems. Proficiente relies on knowledge transferred between hypotheses learned with Support Vector Machines. The first component of the framework is focused on transferring forward selectively from a set of existing hypotheses or functions representing knowledge acquired during previous tasks to a new target task. A second component of Proficiente is focused on transferring backward, a novel ability of long-term learning systems that aim to exploit knowledge derived from recent tasks to encourage refinement of existing knowledge. We propose a method that transfers selectively from a task learned recently to existing hypotheses representing previous tasks. The method encourages retention of existing knowledge whilst refining. We analyse the theoretical properties of the proposed framework. Proficiente is accompanied by an agnostic metric that can be used to determine if a long-term learning system is becoming more knowledgeable. We evaluate Proficiente in both synthetic and real-world datasets, and demonstrate scenarios where knowledgeable supervised learning systems can be achieved by means of transfer.

Local Model Feature Transformations Machine Learning

Local learning methods are a popular class of machine learning algorithms. The basic idea for the entire cadre is to choose some non-local model family, to train many of them on small sections of neighboring data, and then to `stitch' the resulting models together in some way. Due to the limits of constraining a training dataset to a small neighborhood, research on locally-learned models has largely been restricted to simple model families. Also, since simple model families have no complex structure by design, this has limited use of the individual local models to predictive tasks. We hypothesize that, using a sufficiently complex local model family, various properties of the individual local models, such as their learned parameters, can be used as features for further learning. This dissertation improves upon the current state of research and works toward establishing this hypothesis by investigating algorithms for localization of more complex model families and by studying their applications beyond predictions as a feature extraction mechanism. We summarize this generic technique of using local models as a feature extraction step with the term ``local model feature transformations.'' In this document, we extend the local modeling paradigm to Gaussian processes, orthogonal quadric models and word embedding models, and extend the existing theory for localized linear classifiers. We then demonstrate applications of local model feature transformations to epileptic event classification from EEG readings, activity monitoring via chest accelerometry, 3D surface reconstruction, 3D point cloud segmentation, handwritten digit classification and event detection from Twitter feeds.

A Pitfall of Learning from User-generated Data: In-depth Analysis of Subjective Class Problem Machine Learning

Research in the supervised learning algorithms field implicitly assumes that training data is labeled by domain experts or at least semi-professional labelers accessible through crowdsourcing services like Amazon Mechanical Turk. With the advent of the Internet, data has become abundant and a large number of machine learning based systems started being trained with user-generated data, using categorical data as true labels. However, little work has been done in the area of supervised learning with user-defined labels where users are not necessarily experts and might be motivated to provide incorrect labels in order to improve their own utility from the system. In this article, we propose two types of classes in user-defined labels: subjective class and objective class - showing that the objective classes are as reliable as if they were provided by domain experts, whereas the subjective classes are subject to bias and manipulation by the user. We define this as a subjective class issue and provide a framework for detecting subjective labels in a dataset without querying oracle. Using this framework, data mining practitioners can detect a subjective class at an early stage of their projects, and avoid wasting their precious time and resources by dealing with subjective class problem with traditional machine learning techniques.

ARDA: Automatic Relational Data Augmentation for Machine Learning Machine Learning

Automatic machine learning (\AML) is a family of techniques to automate the process of training predictive models, aiming to both improve performance and make machine learning more accessible. While many recent works have focused on aspects of the machine learning pipeline like model selection, hyperparameter tuning, and feature selection, relatively few works have focused on automatic data augmentation. Automatic data augmentation involves finding new features relevant to the user's predictive task with minimal ``human-in-the-loop'' involvement. We present \system, an end-to-end system that takes as input a dataset and a data repository, and outputs an augmented data set such that training a predictive model on this augmented dataset results in improved performance. Our system has two distinct components: (1) a framework to search and join data with the input data, based on various attributes of the input, and (2) an efficient feature selection algorithm that prunes out noisy or irrelevant features from the resulting join. We perform an extensive empirical evaluation of different system components and benchmark our feature selection algorithm on real-world datasets.

Ellipsoidal Subspace Support Vector Data Description Artificial Intelligence

In this paper, we propose a novel method for transforming data into a low-dimensional space optimized for one-class classification. The proposed method iteratively transforms data into a new subspace optimized for ellipsoidal encapsulation of target class data. We provide both linear and non-linear formulations for the proposed method. The method takes into account the covariance of the data in the subspace; hence, it yields a more generalized solution as compared to Subspace Support Vector Data Description for a hypersphere. We propose different regularization terms expressing the class variance in the projected space. We compare the results with classic and recently proposed one-class classification methods and achieve better results in the majority of cases. The proposed method is also noticed to converge much faster than recently proposed Subspace Support Vector Data Description.

Singular Value Decomposition of Operators on Reproducing Kernel Hilbert Spaces Machine Learning

Reproducing kernel Hilbert spaces (RKHSs) play an important role in many statistics and machine learning applications ranging from support vector machines to Gaussian processes and kernel embeddings of distributions. Operators acting on such spaces are, for instance, required to embed conditional probability distributions in order to implement the kernel Bayes rule and build sequential data models. It was recently shown that transfer operators such as the Perron-Frobenius or Koopman operator can also be approximated in a similar fashion using covariance and cross-covariance operators and that eigenfunctions of these operators can be obtained by solving associated matrix eigenvalue problems. The goal of this paper is to provide a solid functional analytic foundation for the eigenvalue decomposition of RKHS operators and to extend the approach to the singular value decomposition. The results are illustrated with simple guiding examples.

A review of machine learning applications in wildfire science and management Machine Learning

Artificial intelligence has been applied in wildfire science and management since the 1990s, with early applications including neural networks and expert systems. Since then the field has rapidly progressed congruently with the wide adoption of machine learning (ML) in the environmental sciences. Here, we present a scoping review of ML in wildfire science and management. Our objective is to improve awareness of ML among wildfire scientists and managers, as well as illustrate the challenging range of problems in wildfire science available to data scientists. We first present an overview of popular ML approaches used in wildfire science to date, and then review their use in wildfire science within six problem domains: 1) fuels characterization, fire detection, and mapping; 2) fire weather and climate change; 3) fire occurrence, susceptibility, and risk; 4) fire behavior prediction; 5) fire effects; and 6) fire management. We also discuss the advantages and limitations of various ML approaches and identify opportunities for future advances in wildfire science and management within a data science context. We identified 298 relevant publications, where the most frequently used ML methods included random forests, MaxEnt, artificial neural networks, decision trees, support vector machines, and genetic algorithms. There exists opportunities to apply more current ML methods (e.g., deep learning and agent based learning) in wildfire science. However, despite the ability of ML models to learn on their own, expertise in wildfire science is necessary to ensure realistic modelling of fire processes across multiple scales, while the complexity of some ML methods requires sophisticated knowledge for their application. Finally, we stress that the wildfire research and management community plays an active role in providing relevant, high quality data for use by practitioners of ML methods.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Machine Learning

Machine learning techniques have been paramount throughout the last years, being applied in a wide range of tasks, such as classification, object recognition, person identification, image segmentation, among others. Nevertheless, conventional classification algorithms, e.g., Logistic Regression, Decision Trees, Bayesian classifiers, might lack complexity and diversity, not being suitable when dealing with real-world data. A recent graph-inspired classifier, known as the Optimum-Path Forest, has proven to be a state-of-the-art technique, comparable to Support Vector Machines and even surpassing it in some tasks. In this paper, we propose a Python-based Optimum-Path Forest framework, denoted as OPFython, where all of its functions and classes are based upon the original C language implementation. Additionally, as OPFython is a Python-based library, it provides a more friendly environment and a faster prototyping workspace than the C language.

Optimization of Passive Chip Components Placement with Self-Alignment Effect for Advanced Surface Mounting Technology Machine Learning

Surface mount technology (SMT) is an enhanced method in electronic packaging in which electronic components are placed directly on soldered printing circuit board (PCB) and are permanently attached on PCB with the aim of reflow soldering process. During reflow process, once deposited solder pastes start melting, electronic components move in a direction that achieve their highest symmetry. This motion is known as self-alignment since can correct potential mounting misalignment. In this study, two noticeable machine learning algorithms, including support vector regression (SVR) and random forest regression (RFR) are proposed as a prediction technique to (1) diagnose the relation among component self-alignment, deposited solder paste status and placement machining parameters, (2) predict the final component position on PCB in x, y, and rotational directions before entering in the reflow process. Based on the prediction result, a non-linear optimization model (NLP) is developed to optimize placement parameters at initial stage. Resultantly, RFR outperforms in terms of prediction model fitness and error. The optimization model is run for 6 samples in which the minimum Euclidean distance from component position after reflow process from ideal position (i.e., the center of pads) is outlined as 25.57 ({\mu}m) regarding defined boundaries in model.

Data-Driven Permanent Magnet Temperature Estimation in Synchronous Motors with Supervised Machine Learning Machine Learning

Monitoring the magnet temperature in permanent magnet synchronous motors (PMSMs) for automotive applications is a challenging task for several decades now, as signal injection or sensor-based methods still prove unfeasible in a commercial context. Overheating results in severe motor deterioration and is thus of high concern for the machine's control strategy and its design. Lack of precise temperature estimations leads to lesser device utilization and higher material cost. In this work, several machine learning (ML) models are empirically evaluated on their estimation accuracy for the task of predicting latent high-dynamic magnet temperature profiles. The range of selected algorithms covers as diverse approaches as possible with ordinary and weighted least squares, support vector regression, $k$-nearest neighbors, randomized trees and neural networks. Having test bench data available, it is shown that ML approaches relying merely on collected data meet the estimation performance of classical thermal models built on thermodynamic theory, yet not all kinds of models render efficient use of large datasets or sufficient modeling capacities. Especially linear regression and simple feed-forward neural networks with optimized hyperparameters mark strong predictive quality at low to moderate model sizes.