Collaborating Authors


3 Levels of Data Science


This article will discuss what I consider to be the three levels of data science competency, namely: level 1 (basic level); level 2 (intermediate level); and level 3 (advanced level). Competency increases from level 1 to 3. We shall use Python as the default language, even though other platforms such as R, SAS, and Matlab could be used as programming languages for data science. The views provided here are my views and are based on my own journey to data science. At level one, a data science aspirant should be able to work with datasets generally presented in comma-separated values (CSV) file format. They should have competency in data basics; data visualization; and linear regression.

How To Code Linear Regression From Scratch -- Quick & Easy!


Here, we load the chocolate data into our program using pandas; we also drop two of the columns we won't be using in our calculation: competitorname and winpercent. Our y becomes the first column in the dataset which indicates if our specific sweet is chocolate (1) or not (0). The remaining columns are used as variables/features to predict our y and, thus, become our X. If you're confused about why we're doing with …[:, 0][:,np.newaxis] on line 5, this is to turn y into a column. We simply add a new dimension to convert the horizontal vector into a vertical column!

Alexander Jung


This lecture discusses how decision trees can be used to represent predictor functions. Variations of the basic decision tree model provide some of the most powerful machine learning methods curren... Alexander Jung uploaded a video 1 week ago Classification Methods - Duration: 46 minutes. Our focus is on linear regression methods which can be expanded by feature constructions. Guest lecture of Prof. Minna Huotilainen on learning processes in human brains. Alexander Jung subscribed to a channel 3 weeks ago Playing For Change - Channel PFC is a movement created to inspire and connect the world through music. The idea for this project came from a common belief that music has the power to break down boundaries and overcome distances SubscribeSubscribedUnsubscribe1.9M This video explains how network Lasso can be used to learn localized linear models that allow "personalized" predictions for individual data points within a network.

SAS Tutorial What is logistic regression?


In this SAS How To Tutorial, Christa Cody provides an introduction to logistic regression and looks at how to perform logistic regression in SAS. After a brief introduction, she will show how to do some basic procedures to your data and fitting the model in SAS Studio. Finally, Christa will demo how to do similar tasks using SAS Model Studio. Download Data Files Download the HMEQ data set that Christa uses Content Outline 00:23 – Intro to Logistic Regression 04:52 – Fit the model in SAS Studio 11:31 – Show similar tasks in SAS Model Studio 12:41 – Why use logistic regression? The LOGISTIC Procedure – Beyond Binary Outcomes paper – Free Statistics 1 e-Course – Free Intro to Statistical Concepts e-Course – Statistical Analysis learning path – SAS Tutorials on Logistic Regression – SUBSCRIBE TO THE SAS USERS YOUTUBE CHANNEL #SASUsers #LearnSAS ABOUT SAS SAS is a trusted analytics powerhouse for organizations seeking immediate value from their data.

Interpreting the Coefficients of a Regression Model with an Interaction Term: A Detailed…


Adding an interaction term to a regression model becomes necessary when the relationship between an explanatory variable and an outcome variable depends on the value/level of another explanatory variable. Although the addition of an interaction term can result in a more meaningful empirical model, it simultaneously complicates the interpretation of model coefficients. In this article, we are going to learn how to interpret the coefficients of a regression model that includes a two-way interaction term. By the end of this article, we should understand how the interpretation of model coefficients differs between a model with an interaction term and a model without an interaction term. We are going to use the statistical software R for building the models and visualizing the outcomes.

Build and deploy your first machine learning web app - KDnuggets


In our last post we demonstrated how to train and deploy machine learning models in Power BI using PyCaret. If you haven't heard about PyCaret before, please read our announcement to get a quick start. In this tutorial we will use PyCaret to develop a machine learning pipeline, that will include preprocessing transformations and a regression model to predict patient hospitalization charges based on demographic and basic patient health risk metrics such as age, BMI, smoking status etc. PyCaret is an open source, low-code machine learning library in Python to train and deploy machine learning pipelines and models in production. PyCaret can be installed easily using pip. Flask is a framework that allows you to build web applications.

Machine Learning for Beginners-Regression Analysis in Python


You're looking for a complete Linear Regression course that teaches you everything you need to create a Linear Regression model in Python, right? You've found the right Linear Regression course! Identify the business problem which can be solved using linear regression technique of Machine Learning. Create a linear regression model in Python and analyze its result. A Verifiable Certificate of Completion is presented to all students who undertake this Machine learning basics course.

Basics of machine learning algorithm every product manager should know


Data has become the new currency now and when the new norm of the life will be push us more towards adoption of digital products, data will play crucial role in determining consumer behaviour and personalising the digital solution. The demand for the digital products will grow day by day and the responsibility of a product manager will also increase, which will push them to learn new skills and technology. I will keep on sharing my experience and learning with fellow product professionals to solve consumers problem in a better way. Let us start our journey with a brief understanding of machine learning. Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience.