Nearest Neighbor Methods
A novel Facial Recognition technique with Focusing on Masked Faces
Abdullah, Dana A, Hamad, Dana Rasul, Beitollahi, Hakem, Maolood, Ismail Y, Abdullah, Abdulhady Abas, Ameen, Aso Khaleel
Recognizing the same faces with and without masks is important for ensuring consistent identification in security, access control, and public safety. This capability is crucial in scenarios like law enforcement, healthcare, and surveillance, where accurate recognition must be maintained despite facial occlusion. This research focuses on the challenge of recognizing the same faces with and without masks by employing cosine similarity as the primary technique. With the increased use of masks, traditional facial recognition systems face significant accuracy issues, making it crucial to develop methods that can reliably identify individuals in masked conditions. For that reason, this study proposed Masked-Unmasked Face Matching Model (MUFM). This model employs transfer learning using the Visual Geometry Group (VGG16) model to extract significant facial features, which are subsequently classified utilizing the K-Nearest Neighbors (K-NN) algorithm. The cosine similarity metric is employed to compare masked and unmasked faces of the same individuals. This approach represents a novel contribution, as the task of recognizing the same individual with and without a mask using cosine similarity has not been previously addressed. By integrating these advanced methodologies, the research demonstrates effective identification of individuals despite the presence of masks, addressing a significant limitation in traditional systems. Using data is another essential part of this work, by collecting and preparing an image dataset from three different sources especially some of those data are real provided a comprehensive power of this research. The image dataset used were already collected in three different datasets of masked and unmasked for the same faces.
KNN-MMD: Cross Domain Wireless Sensing via Local Distribution Alignment
Zhao, Zijian, Cai, Zhijie, Chen, Tingwei, Li, Xiaoyang, Li, Hang, Chen, Qimei, Zhu, Guangxu
Wireless sensing has recently found widespread applications in diverse environments, including homes, offices, and public spaces. By analyzing patterns in channel state information (CSI), it is possible to infer human actions for tasks such as person identification, gesture recognition, and fall detection. However, CSI is highly sensitive to environmental changes, where even minor alterations can significantly distort the CSI patterns. This sensitivity often leads to performance degradation or outright failure when applying wireless sensing models trained in one environment to another. To address this challenge, Domain Alignment (DAL) has been widely adopted for cross-domain classification tasks, as it focuses on aligning the global distributions of the source and target domains in feature space. Despite its popularity, DAL often neglects inter-category relationships, which can lead to misalignment between categories across domains, even when global alignment is achieved. To overcome these limitations, we propose K-Nearest Neighbors Maximum Mean Discrepancy (KNN-MMD), a novel few-shot method for cross-domain wireless sensing. Our approach begins by constructing a help set using KNN from the target domain, enabling local alignment between the source and target domains within each category using MMD. Additionally, we address a key instability issue commonly observed in cross-domain methods, where model performance fluctuates sharply between epochs. Further, most existing methods struggle to determine an optimal stopping point during training due to the absence of labeled data from the target domain. Our method resolves this by excluding the support set from the target domain during training and employing it as a validation set to determine the stopping criterion.
Ensemble of classifiers for speech evaluation
Belokrylov, G., Korenev, A., Lodonova, B., Novokhrestov, A.
The article describes an attempt to apply an ensemble of binary classifiers to solve the problem of speech assessment in medicine. A dataset was compiled based on quantitative and expert assessments of syllable pronunciation quality. Quantitative assessments of 7 selected metrics were used as features: dynamic time warp distance, Minkowski distance, correlation coefficient, longest common subsequence (LCSS), edit distance of real se-quence (EDR), edit distance with real penalty (ERP), and merge split (MSM). Expert as-sessment of pronunciation quality was used as a class label: class 1 means high-quality speech, class 0 means distorted. A comparison of training results was carried out for five classification methods: logistic regression (LR), support vector machine (SVM), naive Bayes (NB), decision trees (DT), and K-nearest neighbors (KNN). The results of using the mixture method to build an ensemble of classifiers are also presented. The use of an en-semble for the studied data sets allowed us to slightly increase the classification accuracy compared to the use of individual binary classifiers.
ObitoNet: Multimodal High-Resolution Point Cloud Reconstruction
Thapliyal, Apoorv, Lanka, Vinay, Baskaran, Swathi
Our approach leverages Vision Transformers (ViT) to extract rich semantic features from input images, while a point cloud tokenizer --utilizing Farthest Point Sampling (FPS) and K-Nearest Neighbors (KNN)--captures local geometric details. These multimodal features are combined using a learnable Cross-Attention module, which facilitates effective interaction between the two modalities. A transformer-based decoder is then employed to reconstruct high-fidelity point clouds. The model is trained with Chamfer Distance (L1/L2) as the loss function, ensuring precise alignment between reconstructed outputs and ground truth data. Experimental evaluations on standard benchmark datasets, including ShapeNet, demonstrate that ObitoNet achieves comparable performance to state-of-the-art methods in point cloud reconstruction.
A Comparative Study of DSPy Teleprompter Algorithms for Aligning Large Language Models Evaluation Metrics to Human Evaluation
Sarmah, Bhaskarjit, Dutta, Kriti, Grigoryan, Anna, Tiwari, Sachin, Pasquali, Stefano, Mehta, Dhagash
We argue that the Declarative Self-improving Python (DSPy) optimizers are a way to align the large language model (LLM) prompts and their evaluations to the human annotations. We present a comparative analysis of five teleprompter algorithms, namely, Cooperative Prompt Optimization (COPRO), Multi-Stage Instruction Prompt Optimization (MIPRO), BootstrapFewShot, BootstrapFewShot with Optuna, and K-Nearest Neighbor Few Shot, within the DSPy framework with respect to their ability to align with human evaluations. As a concrete example, we focus on optimizing the prompt to align hallucination detection (using LLM as a judge) to human annotated ground truth labels for a publicly available benchmark dataset. Our experiments demonstrate that optimized prompts can outperform various benchmark methods to detect hallucination, and certain telemprompters outperform the others in at least these experiments.
X-MeshGraphNet: Scalable Multi-Scale Graph Neural Networks for Physics Simulation
Nabian, Mohammad Amin, Liu, Chang, Ranade, Rishikesh, Choudhry, Sanjay
Graph Neural Networks (GNNs) have gained significant traction for simulating complex physical systems, with models like MeshGraphNet demonstrating strong performance on unstructured simulation meshes. However, these models face several limitations, including scalability issues, requirement for meshing at inference, and challenges in handling long-range interactions. In this work, we introduce X-MeshGraphNet, a scalable, multi-scale extension of MeshGraphNet designed to address these challenges. X-MeshGraphNet overcomes the scalability bottleneck by partitioning large graphs and incorporating halo regions that enable seamless message passing across partitions. This, combined with gradient aggregation, ensures that training across partitions is equivalent to processing the entire graph at once. To remove the dependency on simulation meshes, X-MeshGraphNet constructs custom graphs directly from tessellated geometry files (e.g., STLs) by generating point clouds on the surface or volume of the object and connecting k-nearest neighbors. Additionally, our model builds multi-scale graphs by iteratively combining coarse and fine-resolution point clouds, where each level refines the previous, allowing for efficient long-range interactions. Our experiments demonstrate that X-MeshGraphNet maintains the predictive accuracy of full-graph GNNs while significantly improving scalability and flexibility. This approach eliminates the need for time-consuming mesh generation at inference, offering a practical solution for real-time simulation across a wide range of applications. The code for reproducing the results presented in this paper is available through NVIDIA Modulus.
Predicting Emergency Department Visits for Patients with Type II Diabetes
Alizadeh, Javad M, Patel, Jay S, Tajeu, Gabriel, Chen, Yuzhou, Hollin, Ilene L, Patel, Mukesh K, Fei, Junchao, Wu, Huanmei
Over 30 million Americans are affected by Type II diabetes (T2D), a treatable condition with significant health risks. This study aims to develop and validate predictive models using machine learning (ML) techniques to estimate emergency department (ED) visits among patients with T2D. Data for these patients was obtained from the HealthShare Exchange (HSX), focusing on demographic details, diagnoses, and vital signs. Our sample contained 34,151 patients diagnosed with T2D which resulted in 703,065 visits overall between 2017 and 2021. A workflow integrated EMR data with SDoH for ML predictions. A total of 87 out of 2,555 features were selected for model construction. Various machine learning algorithms, including CatBoost, Ensemble Learning, K-nearest Neighbors (KNN), Support Vector Classification (SVC), Random Forest, and Extreme Gradient Boosting (XGBoost), were employed with tenfold cross-validation to predict whether a patient is at risk of an ED visit. The ROC curves for Random Forest, XGBoost, Ensemble Learning, CatBoost, KNN, and SVC, were 0.82, 0.82, 0.82, 0.81, 0.72, 0.68, respectively. Ensemble Learning and Random Forest models demonstrated superior predictive performance in terms of discrimination, calibration, and clinical applicability. These models are reliable tools for predicting risk of ED visits among patients with T2D. They can estimate future ED demand and assist clinicians in identifying critical factors associated with ED utilization, enabling early interventions to reduce such visits. The top five important features were age, the difference between visitation gaps, visitation gaps, R10 or abdominal and pelvic pain, and the Index of Concentration at the Extremes (ICE) for income.
Robust Feature Engineering Techniques for Designing Efficient Motor Imagery-Based BCI-Systems
Gardezi, Syed Saim, Jawed, Soyiba, Khan, Mahnoor, Bukhari, Muneeba, Khan, Rizwan Ahmed
A multitude of individuals across the globe grapple with motor disabilities. Neural prosthetics utilizing Brain-Computer Interface (BCI) technology exhibit promise for improving motor rehabilitation outcomes. The intricate nature of EEG data poses a significant hurdle for current BCI systems. Recently, a qualitative repository of EEG signals tied to both upper and lower limb execution of motor and motor imagery tasks has been unveiled. Despite this, the productivity of the Machine Learning (ML) Models that were trained on this dataset was alarmingly deficient, and the evaluation framework seemed insufficient. To enhance outcomes, robust feature engineering (signal processing) methodologies are implemented. A collection of time domain, frequency domain, and wavelet-derived features was obtained from 16-channel EEG signals, and the Maximum Relevance Minimum Redundancy (MRMR) approach was employed to identify the four most significant features. For classification K Nearest Neighbors (KNN), Support Vector Machine (SVM), Decision Tree (DT), and Na\"ive Bayes (NB) models were implemented with these selected features, evaluating their effectiveness through metrics such as testing accuracy, precision, recall, and F1 Score. By leveraging SVM with a Gaussian Kernel, a remarkable maximum testing accuracy of 92.50% for motor activities and 95.48% for imagery activities is achieved. These results are notably more dependable and gratifying compared to the previous study, where the peak accuracy was recorded at 74.36%. This research work provides an in-depth analysis of the MI Limb EEG dataset and it will help in designing and developing simple, cost-effective and reliable BCI systems for neuro-rehabilitation.
Utilizing Machine Learning Models to Predict Acute Kidney Injury in Septic Patients from MIMIC-III Database
Roknaldin, Aleyeh, Zhang, Zehao, Xu, Jiayuan, Alaei, Kamiar, Pishgar, Maryam
Sepsis is a severe condition that causes the body to respond incorrectly to an infection. This reaction can subsequently cause organ failure, a major one being acute kidney injury (AKI). For septic patients, approximately 50% develop AKI, with a mortality rate above 40%. Creating models that can accurately predict AKI based on specific qualities of septic patients is crucial for early detection and intervention. Using medical data from septic patients during intensive care unit (ICU) admission from the Medical Information Mart for Intensive Care 3 (MIMIC-III) database, we extracted 3301 patients with sepsis, with 73% of patients developing AKI. The data was randomly divided into a training set (n = 1980, 40%), a test set (n = 661, 10%), and a validation set (n = 660, 50%). The proposed model was logistic regression, and it was compared against five baseline models: XGBoost, K Nearest Neighbors (KNN), Support Vector Machines (SVM), Random Forest (RF), and LightGBM. Area Under the Curve (AUC), Accuracy, F1-Score, and Recall were calculated for each model. After analysis, we were able to select 23 features to include in our model, the top features being urine output, maximum bilirubin, minimum bilirubin, weight, maximum blood urea nitrogen, and minimum estimated glomerular filtration rate. The logistic regression model performed the best, achieving an AUC score of 0.887 (95% CI: [0.861-0.915]), an accuracy of 0.817, an F1 score of 0.866, a recall score of 0.827, and a Brier score of 0.13. Compared to the best existing literature in this field, our model achieved an 8.57% improvement in AUC while using 13 fewer variables, showcasing its effectiveness in determining AKI in septic patients. While the features selected for predicting AKI in septic patients are similar to previous literature, the top features that influenced our model's performance differ.
Optimized IoT Intrusion Detection using Machine Learning Technique
Mahmud, Muhammad Zawad, Islam, Samiha, Alve, Shahran Rahman, Pial, Al Jubayer
An application of software known as an Intrusion Detection System (IDS) employs machine algorithms to identify network intrusions. Selective logging, safeguarding privacy, reputation-based defense against numerous attacks, and dynamic response to threats are a few of the problems that intrusion identification is used to solve. The biological system known as IoT has seen a rapid increase in high dimensionality and information traffic. Self-protective mechanisms like intrusion detection systems (IDSs) are essential for defending against a variety of attacks. On the other hand, the functional and physical diversity of IoT IDS systems causes significant issues. These attributes make it troublesome and unrealistic to completely use all IoT elements and properties for IDS self-security. For peculiarity-based IDS, this study proposes and implements a novel component selection and extraction strategy (our strategy). A five-ML algorithm model-based IDS for machine learning-based networks with proper hyperparamater tuning is presented in this paper by examining how the most popular feature selection methods and classifiers are combined, such as K-Nearest Neighbors (KNN) Classifier, Decision Tree (DT) Classifier, Random Forest (RF) Classifier, Gradient Boosting Classifier, and Ada Boost Classifier. The Random Forest (RF) classifier had the highest accuracy of 99.39%. The K-Nearest Neighbor (KNN) classifier exhibited the lowest performance among the evaluated models, achieving an accuracy of 94.84%. This study's models have a significantly higher performance rate than those used in previous studies, indicating that they are more reliable.