Goto

Collaborating Authors

 Nearest Neighbor Methods


Reviews: k*-Nearest Neighbors: From Global to Local

Neural Information Processing Systems

The mathematical derivation in this work is novel and interesting, but the writing can be improved. The derivation uses Hoeffding's inequality for noise on labels, with a mild assumption on the maximum noise. The analysis using KKT condition is straightforward, and it results in an interesting strategy for finding weights. I want to support the acceptance of this paper, but I have several concerns: 1) According to the derivation, the upper bound of the risk (P1) is given as C\lambda (line 112). With some simple calculations using appropriate parameters, this upper bound does not give a small value.


k*-Nearest Neighbors: From Global to Local

Neural Information Processing Systems

The weighted k-nearest neighbors algorithm is one of the most fundamental nonparametric methods in pattern recognition and machine learning. The question of setting the optimal number of neighbors as well as the optimal weights has received much attention throughout the years, nevertheless this problem seems to have remained unsettled. In this paper we offer a simple approach to locally weighted regression/classification, where we make the bias-variance tradeoff explicit. Our formulation enables us to phrase a notion of optimal weights, and to efficiently find these weights as well as the optimal number of neighbors efficiently and adaptively, for each data point whose value we wish to estimate. The applicability of our approach is demonstrated on several datasets, showing superior performance over standard locally weighted methods.


Reviews: Active Nearest-Neighbor Learning in Metric Spaces

Neural Information Processing Systems

I am not qualified to evaluate this work in term of its relevance within the literature. Therefore my judgment is only about the paper content itself. Also, I have only reviewed the proofs contained in the main paper the one of Lemma A.1. Theorem 3.2 guarantees a significant improvement upon the passive learner characterized by 3.1. I find the example in line2 141-143 about the 1/sqrt(m) order very helpful and I suggest the authors to include it in the introduction as well.


Active Nearest-Neighbor Learning in Metric Spaces

Neural Information Processing Systems

We propose a pool-based non-parametric active learning algorithm for general metric spaces, called MArgin Regularized Metric Active Nearest Neighbor (MARMANN), which outputs a nearest-neighbor classifier. We give prediction error guarantees that depend on the noisy-margin properties of the input sample, and are competitive with those obtained by previously proposed passive learners. We prove that the label complexity of MARMANN is significantly lower than that of any passive learner with similar error guarantees. Our algorithm is based on a generalized sample compression scheme and a new label-efficient active model-selection procedure.


Meta-Instance Selection. Instance Selection as a Classification Problem with Meta-Features

arXiv.org Artificial Intelligence

Data pruning, or instance selection, is an important problem in machine learning especially in terms of nearest neighbour classifier. However, in data pruning which speeds up the prediction phase, there is an issue related to the speed and efficiency of the process itself. In response, the study proposes an approach involving transforming the instance selection process into a classification task conducted in a unified meta-feature space where each instance can be classified and assigned to either the "to keep" or "to remove" class. This approach requires training an appropriate meta-classifier, which can be developed based on historical instance selection results from other datasets using reference instance selection methods as a labeling tool. This work proposes constructing the meta-feature space based on properties extracted from the nearest neighbor graph. Experiments conducted on 17 datasets of varying sizes and five reference instance selection methods (ENN, Drop3, ICF, HMN-EI, and CCIS) demonstrate that the proposed solution achieves results comparable to reference instance selection methods while significantly reducing computational complexity. In the proposed approach, the computational complexity of the system depends only on identifying the k-nearest neighbors for each data sample and running the meta-classifier. Additionally, the scaling law turns into the requirement of huge compute power both during training and prediction which is not always applicable in real live scenarios where the compute resources are limited. In that case, both the training data and the prediction model should require small computing resources. Therefore the training set should ensure a possible small size but keep the prediction accuracy of the original training set. This issue is not new, along with its development has been started primarily for the nearest neighbor classifier under the name of instance selection. Thus, already in the late 1960s and early 1970s, algorithms such as Condensed Nearest Neighbor (CNN), Edited Nearest Neighbor (ENN), and many others were developed. The benchmarks of instance selection indicate the Drop3 [3] and ICF [4] algorithms as the most wildly used, which, despite not being new, are characterized by excellent properties in terms of the balance between the prediction accuracy of the kNN algorithm and the reduction of the size of the stored set of prototypes (reduction_rate) [5]. These algorithms are also applicable not only as elements of the learning process for the kNN algorithm (prototype selection as part of the learning process) and hence could also be used as universal algorithms for reducing the size of the training set for any classifier, thereby accelerating the learning process of complex predictive models, the process of finding optimal parameters, etc. Examples of such applications can be found in [6, 7] or in [5].


Supervised Learning for Analog and RF Circuit Design: Benchmarks and Comparative Insights

arXiv.org Artificial Intelligence

Automating analog and radio-frequency (RF) circuit design using machine learning (ML) significantly reduces the time and effort required for parameter optimization. This study explores supervised ML-based approaches for designing circuit parameters from performance specifications across various circuit types, including homogeneous and heterogeneous designs. By evaluating diverse ML models, from neural networks like transformers to traditional methods like random forests, we identify the best-performing models for each circuit. Our results show that simpler circuits, such as low-noise amplifiers, achieve exceptional accuracy with mean relative errors as low as 0.3% due to their linear parameter-performance relationships. In contrast, complex circuits, like power amplifiers and voltage-controlled oscillators, present challenges due to their non-linear interactions and larger design spaces. For heterogeneous circuits, our approach achieves an 88% reduction in errors with increased training data, with the receiver achieving a mean relative error as low as 0.23%, showcasing the scalability and accuracy of the proposed methodology. Additionally, we provide insights into model strengths, with transformers excelling in capturing non-linear mappings and k-nearest neighbors performing robustly in moderately linear parameter spaces, especially in heterogeneous circuits with larger datasets. This work establishes a foundation for extending ML-driven design automation, enabling more efficient and scalable circuit design workflows.


Distributionally robust weighted k-nearest neighbors

Neural Information Processing Systems

Learning a robust classifier from a few samples remains a key challenge in machine learning. A major thrust of research has been focused on developing k-nearest neighbor (k-NN) based algorithms combined with metric learning that captures similarities between samples. When the samples are limited, robustness is especially crucial to ensure the generalization capability of the classifier. In this paper, we study a minimax distributionally robust formulation of weighted k-nearest neighbors, which aims to find the optimal weighted k-NN classifiers that hedge against feature uncertainties. We develop an algorithm, Dr.k-NN, that efficiently solves this functional optimization problem and features in assigning minimax optimal weights to training samples when performing classification.


K-Nearest-Neighbor Local Sampling Based Conditional Independence Testing

Neural Information Processing Systems

Conditional independence (CI) testing is a fundamental task in statistics and machine learning, but its effectiveness is hindered by the challenges posed by high-dimensional conditioning variables and limited data samples. This article introduces a novel testing approach to address these challenges and enhance control of the type I error while achieving high power under alternative hypotheses. The proposed approach incorporates a computationally efficient classifier-based conditional mutual information (CMI) estimator, capable of capturing intricate dependence structures among variables. To approximate a distribution encoding the null hypothesis, a k -nearest-neighbor local sampling strategy is employed. An important advantage of this approach is its ability to operate without assumptions about distribution forms or feature dependencies. Furthermore, it eliminates the need to derive asymptotic null distributions for the estimated CMI and avoids dataset splitting, making it particularly suitable for small datasets.


Explaining k-Nearest Neighbors: Abductive and Counterfactual Explanations

arXiv.org Artificial Intelligence

Despite the wide use of $k$-Nearest Neighbors as classification models, their explainability properties remain poorly understood from a theoretical perspective. While nearest neighbors classifiers offer interpretability from a "data perspective", in which the classification of an input vector $\bar{x}$ is explained by identifying the vectors $\bar{v}_1, \ldots, \bar{v}_k$ in the training set that determine the classification of $\bar{x}$, we argue that such explanations can be impractical in high-dimensional applications, where each vector has hundreds or thousands of features and it is not clear what their relative importance is. Hence, we focus on understanding nearest neighbor classifications through a "feature perspective", in which the goal is to identify how the values of the features in $\bar{x}$ affect its classification. Concretely, we study abductive explanations such as "minimum sufficient reasons", which correspond to sets of features in $\bar{x}$ that are enough to guarantee its classification, and "counterfactual explanations" based on the minimum distance feature changes one would have to perform in $\bar{x}$ to change its classification. We present a detailed landscape of positive and negative complexity results for counterfactual and abductive explanations, distinguishing between discrete and continuous feature spaces, and considering the impact of the choice of distance function involved. Finally, we show that despite some negative complexity results, Integer Quadratic Programming and SAT solving allow for computing explanations in practice.


A Neighbor-based Approach to Pitch Ownership Models in Soccer

arXiv.org Artificial Intelligence

Pitch ownership models allow many types of analysis in soccer and provide valuable assistance to tactical analysts in understanding the game's dynamics. The novelty they provide over event-based analysis is that tracking data incorporates context that event-based data does not possess, like player positioning. This paper proposes a novel approach to building pitch ownership models in soccer games using the K-Nearest Neighbors (KNN) algorithm. Our approach provides a fast inference mechanism that can model different approaches to pitch control using the same algorithm. Despite its flexibility, it uses only three hyperparameters to tune the model, facilitating the tuning process for different player skill levels. The flexibility of the approach allows for the emulation of different methods available in the literature by adjusting a small number of parameters, including adjusting for different levels of uncertainty. In summary, the proposed model provides a new and more flexible strategy for building pitch ownership models, extending beyond just replicating existing algorithms, and can provide valuable insights for tactical analysts and open up new avenues for future research. We thoroughly visualize several examples demonstrating the presented models' strengths and weaknesses. The code is available at github.com/nvsclub/KNNPitchControl.